Nonexistence of Global Weak Solutions for a Nonlinear Schrödinger Equation in an Exterior Domain

We study the large-time behavior of solutions to the nonlinear exterior problem <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">L</mi> <mi>u</mi> <mrow> <mo stretchy="false">...

Full description

Bibliographic Details
Main Authors: Awatif Alqahtani, Mohamed Jleli, Bessem Samet, Calogero Vetro
Format: Article
Language:English
Published: MDPI AG 2020-03-01
Series:Symmetry
Subjects:
Online Access:https://www.mdpi.com/2073-8994/12/3/394
_version_ 1817993493240348672
author Awatif Alqahtani
Mohamed Jleli
Bessem Samet
Calogero Vetro
author_facet Awatif Alqahtani
Mohamed Jleli
Bessem Samet
Calogero Vetro
author_sort Awatif Alqahtani
collection DOAJ
description We study the large-time behavior of solutions to the nonlinear exterior problem <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">L</mi> <mi>u</mi> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mi>&#954;</mi> <mo stretchy="false">|</mo> <mi>u</mi> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo stretchy="false">|</mo> </mrow> <mi>p</mi> </msup> <mo>,</mo> <mspace width="1.em"></mspace> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>&#8712;</mo> <mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mo>&#8734;</mo> <mo stretchy="false">)</mo> </mrow> <mo>&#215;</mo> <msup> <mi>D</mi> <mi>c</mi> </msup> </mrow> </semantics> </math> </inline-formula> under the nonhomegeneous Neumann boundary condition <inline-formula> <math display="inline"> <semantics> <mrow> <mfrac> <mrow> <mo>&#8706;</mo> <mi>u</mi> </mrow> <mrow> <mo>&#8706;</mo> <mi>&#957;</mi> </mrow> </mfrac> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mi>&#955;</mi> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>,</mo> <mspace width="1.em"></mspace> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>&#8712;</mo> <mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mo>&#8734;</mo> <mo stretchy="false">)</mo> </mrow> <mo>&#215;</mo> <mo>&#8706;</mo> <mi>D</mi> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">L</mi> <mo>:</mo> <mo>=</mo> <mi>i</mi> <msub> <mo>&#8706;</mo> <mi>t</mi> </msub> <mo>+</mo> <mo>&#916;</mo> </mrow> </semantics> </math> </inline-formula> is the Schr&#246;dinger operator, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>D</mi> <mo>=</mo> <mi>B</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> is the open unit ball in <inline-formula> <math display="inline"> <semantics> <msup> <mi mathvariant="double-struck">R</mi> <mi>N</mi> </msup> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>&#8805;</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>D</mi> <mi>c</mi> </msup> <mo>=</mo> <msup> <mi mathvariant="double-struck">R</mi> <mi>N</mi> </msup> <mrow> <mo>∖</mo> <mi>D</mi> </mrow> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>&gt;</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#954;</mi> <mo>&#8712;</mo> <mi mathvariant="double-struck">C</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#954;</mi> <mo>&#8800;</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#955;</mi> <mo>&#8712;</mo> <msup> <mi>L</mi> <mn>1</mn> </msup> <mrow> <mo stretchy="false">(</mo> <mo>&#8706;</mo> <mi>D</mi> <mo>,</mo> <mi mathvariant="double-struck">C</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> is a nontrivial complex valued function, and <inline-formula> <math display="inline"> <semantics> <mrow> <mo>&#8706;</mo> <mi>&#957;</mi> </mrow> </semantics> </math> </inline-formula> is the outward unit normal vector on <inline-formula> <math display="inline"> <semantics> <mrow> <mo>&#8706;</mo> <mi>D</mi> </mrow> </semantics> </math> </inline-formula>, relative to <inline-formula> <math display="inline"> <semantics> <msup> <mi>D</mi> <mi>c</mi> </msup> </semantics> </math> </inline-formula>. Namely, under a certain condition imposed on <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mi>&#954;</mi> <mo>,</mo> <mi>&#955;</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, we show that if <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>&#8805;</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>&lt;</mo> <msub> <mi>p</mi> <mi>c</mi> </msub> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>p</mi> <mi>c</mi> </msub> <mo>=</mo> <mfrac> <mi>N</mi> <mrow> <mi>N</mi> <mo>&#8722;</mo> <mn>2</mn> </mrow> </mfrac> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> then the considered problem admits no global weak solutions. However, if <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>, then for all <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>&gt;</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, the problem admits no global weak solutions. The proof is based on the test function method introduced by Mitidieri and Pohozaev, and an adequate choice of the test function.
first_indexed 2024-04-14T01:39:41Z
format Article
id doaj.art-bf0721dcc8d34287965571a279dc9aa2
institution Directory Open Access Journal
issn 2073-8994
language English
last_indexed 2024-04-14T01:39:41Z
publishDate 2020-03-01
publisher MDPI AG
record_format Article
series Symmetry
spelling doaj.art-bf0721dcc8d34287965571a279dc9aa22022-12-22T02:19:48ZengMDPI AGSymmetry2073-89942020-03-0112339410.3390/sym12030394sym12030394Nonexistence of Global Weak Solutions for a Nonlinear Schrödinger Equation in an Exterior DomainAwatif Alqahtani0Mohamed Jleli1Bessem Samet2Calogero Vetro3Department of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi ArabiDepartment of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi ArabiDepartment of Mathematics, College of Science, King Saud University, P.O. Box 2455, Riyadh 11451, Saudi ArabiDepartment of Mathematics and Computer Science, University of Palermo, Via Archirafi 34, 90123 Palermo, ItalyWe study the large-time behavior of solutions to the nonlinear exterior problem <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">L</mi> <mi>u</mi> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <msup> <mrow> <mi>&#954;</mi> <mo stretchy="false">|</mo> <mi>u</mi> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo stretchy="false">|</mo> </mrow> <mi>p</mi> </msup> <mo>,</mo> <mspace width="1.em"></mspace> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>&#8712;</mo> <mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mo>&#8734;</mo> <mo stretchy="false">)</mo> </mrow> <mo>&#215;</mo> <msup> <mi>D</mi> <mi>c</mi> </msup> </mrow> </semantics> </math> </inline-formula> under the nonhomegeneous Neumann boundary condition <inline-formula> <math display="inline"> <semantics> <mrow> <mfrac> <mrow> <mo>&#8706;</mo> <mi>u</mi> </mrow> <mrow> <mo>&#8706;</mo> <mi>&#957;</mi> </mrow> </mfrac> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>=</mo> <mi>&#955;</mi> <mrow> <mo stretchy="false">(</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>,</mo> <mspace width="1.em"></mspace> <mrow> <mo stretchy="false">(</mo> <mi>t</mi> <mo>,</mo> <mi>x</mi> <mo stretchy="false">)</mo> </mrow> <mo>&#8712;</mo> <mrow> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mo>&#8734;</mo> <mo stretchy="false">)</mo> </mrow> <mo>&#215;</mo> <mo>&#8706;</mo> <mi>D</mi> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> where <inline-formula> <math display="inline"> <semantics> <mrow> <mi mathvariant="script">L</mi> <mo>:</mo> <mo>=</mo> <mi>i</mi> <msub> <mo>&#8706;</mo> <mi>t</mi> </msub> <mo>+</mo> <mo>&#916;</mo> </mrow> </semantics> </math> </inline-formula> is the Schr&#246;dinger operator, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>D</mi> <mo>=</mo> <mi>B</mi> <mo stretchy="false">(</mo> <mn>0</mn> <mo>,</mo> <mn>1</mn> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula> is the open unit ball in <inline-formula> <math display="inline"> <semantics> <msup> <mi mathvariant="double-struck">R</mi> <mi>N</mi> </msup> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>&#8805;</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <msup> <mi>D</mi> <mi>c</mi> </msup> <mo>=</mo> <msup> <mi mathvariant="double-struck">R</mi> <mi>N</mi> </msup> <mrow> <mo>∖</mo> <mi>D</mi> </mrow> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>&gt;</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#954;</mi> <mo>&#8712;</mo> <mi mathvariant="double-struck">C</mi> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#954;</mi> <mo>&#8800;</mo> <mn>0</mn> </mrow> </semantics> </math> </inline-formula>, <inline-formula> <math display="inline"> <semantics> <mrow> <mi>&#955;</mi> <mo>&#8712;</mo> <msup> <mi>L</mi> <mn>1</mn> </msup> <mrow> <mo stretchy="false">(</mo> <mo>&#8706;</mo> <mi>D</mi> <mo>,</mo> <mi mathvariant="double-struck">C</mi> <mo stretchy="false">)</mo> </mrow> </mrow> </semantics> </math> </inline-formula> is a nontrivial complex valued function, and <inline-formula> <math display="inline"> <semantics> <mrow> <mo>&#8706;</mo> <mi>&#957;</mi> </mrow> </semantics> </math> </inline-formula> is the outward unit normal vector on <inline-formula> <math display="inline"> <semantics> <mrow> <mo>&#8706;</mo> <mi>D</mi> </mrow> </semantics> </math> </inline-formula>, relative to <inline-formula> <math display="inline"> <semantics> <msup> <mi>D</mi> <mi>c</mi> </msup> </semantics> </math> </inline-formula>. Namely, under a certain condition imposed on <inline-formula> <math display="inline"> <semantics> <mrow> <mo stretchy="false">(</mo> <mi>&#954;</mi> <mo>,</mo> <mi>&#955;</mi> <mo stretchy="false">)</mo> </mrow> </semantics> </math> </inline-formula>, we show that if <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>&#8805;</mo> <mn>3</mn> </mrow> </semantics> </math> </inline-formula> and <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>&lt;</mo> <msub> <mi>p</mi> <mi>c</mi> </msub> </mrow> </semantics> </math> </inline-formula>, where <inline-formula> <math display="inline"> <semantics> <mrow> <msub> <mi>p</mi> <mi>c</mi> </msub> <mo>=</mo> <mfrac> <mi>N</mi> <mrow> <mi>N</mi> <mo>&#8722;</mo> <mn>2</mn> </mrow> </mfrac> <mo>,</mo> </mrow> </semantics> </math> </inline-formula> then the considered problem admits no global weak solutions. However, if <inline-formula> <math display="inline"> <semantics> <mrow> <mi>N</mi> <mo>=</mo> <mn>2</mn> </mrow> </semantics> </math> </inline-formula>, then for all <inline-formula> <math display="inline"> <semantics> <mrow> <mi>p</mi> <mo>&gt;</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>, the problem admits no global weak solutions. The proof is based on the test function method introduced by Mitidieri and Pohozaev, and an adequate choice of the test function.https://www.mdpi.com/2073-8994/12/3/394nonlinear schrödinger equationexterior domainnonhomegeneous neumann boundary conditionglobal weak solution
spellingShingle Awatif Alqahtani
Mohamed Jleli
Bessem Samet
Calogero Vetro
Nonexistence of Global Weak Solutions for a Nonlinear Schrödinger Equation in an Exterior Domain
Symmetry
nonlinear schrödinger equation
exterior domain
nonhomegeneous neumann boundary condition
global weak solution
title Nonexistence of Global Weak Solutions for a Nonlinear Schrödinger Equation in an Exterior Domain
title_full Nonexistence of Global Weak Solutions for a Nonlinear Schrödinger Equation in an Exterior Domain
title_fullStr Nonexistence of Global Weak Solutions for a Nonlinear Schrödinger Equation in an Exterior Domain
title_full_unstemmed Nonexistence of Global Weak Solutions for a Nonlinear Schrödinger Equation in an Exterior Domain
title_short Nonexistence of Global Weak Solutions for a Nonlinear Schrödinger Equation in an Exterior Domain
title_sort nonexistence of global weak solutions for a nonlinear schrodinger equation in an exterior domain
topic nonlinear schrödinger equation
exterior domain
nonhomegeneous neumann boundary condition
global weak solution
url https://www.mdpi.com/2073-8994/12/3/394
work_keys_str_mv AT awatifalqahtani nonexistenceofglobalweaksolutionsforanonlinearschrodingerequationinanexteriordomain
AT mohamedjleli nonexistenceofglobalweaksolutionsforanonlinearschrodingerequationinanexteriordomain
AT bessemsamet nonexistenceofglobalweaksolutionsforanonlinearschrodingerequationinanexteriordomain
AT calogerovetro nonexistenceofglobalweaksolutionsforanonlinearschrodingerequationinanexteriordomain