Enhanced Cr(VI) stabilization in soil by chitosan/bentonite composites

In this study, chitosan/bentonite composites (CSBT) was synthesized and applied to the immobilization of chromium in the soil. The influence of passivating agents on various forms of chromium was investigated by batch experiment. The results showed that CSBT could reduce the content of exchangeable...

Full description

Bibliographic Details
Main Authors: Yanjun Liu, Junjie Jia, Huifeng Zhang, Shujuan Sun
Format: Article
Language:English
Published: Elsevier 2022-06-01
Series:Ecotoxicology and Environmental Safety
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S0147651322004134
Description
Summary:In this study, chitosan/bentonite composites (CSBT) was synthesized and applied to the immobilization of chromium in the soil. The influence of passivating agents on various forms of chromium was investigated by batch experiment. The results showed that CSBT could reduce the content of exchangeable form and oxidizable form, while increase the content of residual form of chromium. The addition of 0.2 g·kg−1 CSBT had the best effect, with the concentration of exchangeable, reducible and oxidizable form decreased by 46.74%, 8.15%, and 14.46%, respectively. During the experiment time, the passivation effect increased rapidly within 14 days, and the content of residual form in the total Cr increased from 0.76% to 14.23%, the equilibrium was reached at the 28th day and was basically maintained in the subsequent period. CSBT had little impact on soil pH, and soil pH maintained constant during the experiment period. The amino, carboxyl and hydroxyl groups of CSBT promoted the conversion of available chromium to residual state in soil, and reduced the bioavailability of chromium in soil.
ISSN:0147-6513