On the intersection power graph of a finite group

<p>Given a group <span class="math"><em>G</em></span>, the intersection power graph of <span class="math"><em>G</em></span>, denoted by <span class="math">G<sub><em>I</em></sub>(<em&g...

Full description

Bibliographic Details
Main Author: Sudip Bera
Format: Article
Language:English
Published: Indonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), Indonesia 2018-04-01
Series:Electronic Journal of Graph Theory and Applications
Subjects:
Online Access:https://www.ejgta.org/index.php/ejgta/article/view/465
_version_ 1818216177465294848
author Sudip Bera
author_facet Sudip Bera
author_sort Sudip Bera
collection DOAJ
description <p>Given a group <span class="math"><em>G</em></span>, the intersection power graph of <span class="math"><em>G</em></span>, denoted by <span class="math">G<sub><em>I</em></sub>(<em>G</em>)</span>, is the graph with vertex set <span class="math"><em>G</em></span> and two distinct vertices <span class="math"><em>x</em></span> and <span class="math"><em>y</em></span> are adjacent in <span class="math">G<sub><em>I</em></sub>(<em>G</em>)</span> if there exists a non-identity element <span class="math"><em>z</em> ∈ <em>G</em></span> such that x<sup>m</sup>=z=y<sup>n</sup>, for some <span class="math"><em>m</em>, <em>n</em> ∈ N</span>, i.e. <span class="math"><em>x</em> ∼ <em>y</em></span> in <span class="math">G<sub><em>I</em></sub>(<em>G</em>)</span> if <span class="math">⟨<em>x</em>⟩ ∩ ⟨<em>y</em>⟩ ≠ {<em>e</em>}</span> and <span class="math"><em>e</em></span> is adjacent to all other vertices, where <span class="math"><em>e</em></span> is the identity element of the group <span class="math"><em>G</em></span>. Here we show that the graph <span class="math">G<sub><em>I</em></sub>(<em>G</em>)</span> is complete if and only if either <span class="math"><em>G</em></span> is cyclic <span class="math"><em>p</em></span>-group or <span class="math"><em>G</em></span> is a generalized quaternion group. Furthermore, <span class="math">G<sub><em>I</em></sub>(<em>G</em>)</span> is Eulerian if and only if <span class="math">∣<em>G</em>∣</span> is odd. We characterize all abelian groups and also all non-abelian <span class="math"><em>p</em></span>-groups <span class="math"><em>G</em></span>, for which <span class="math">G<sub><em>I</em></sub>(<em>G</em>)</span> is dominatable. Beside, we determine the automorphism group of the graph <span class="math">G<sub><em>I</em></sub>(Z<sub><em>n</em></sub>)</span>, when <span class="math"><em>n</em> ≠ <em>p</em><sup><em>m</em></sup></span>.</p>
first_indexed 2024-12-12T06:47:50Z
format Article
id doaj.art-bf1ae0dfd70946cb94aaf15449cca53b
institution Directory Open Access Journal
issn 2338-2287
language English
last_indexed 2024-12-12T06:47:50Z
publishDate 2018-04-01
publisher Indonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), Indonesia
record_format Article
series Electronic Journal of Graph Theory and Applications
spelling doaj.art-bf1ae0dfd70946cb94aaf15449cca53b2022-12-22T00:34:08ZengIndonesian Combinatorial Society (InaCombS); Graph Theory and Applications (GTA) Research Centre; University of Newcastle, Australia; Institut Teknologi Bandung (ITB), IndonesiaElectronic Journal of Graph Theory and Applications2338-22872018-04-016110.5614/ejgta.2018.6.1.13114On the intersection power graph of a finite groupSudip Bera0Department of Mathematics, Visva-Bharati, Santiniketan-731235, India.<p>Given a group <span class="math"><em>G</em></span>, the intersection power graph of <span class="math"><em>G</em></span>, denoted by <span class="math">G<sub><em>I</em></sub>(<em>G</em>)</span>, is the graph with vertex set <span class="math"><em>G</em></span> and two distinct vertices <span class="math"><em>x</em></span> and <span class="math"><em>y</em></span> are adjacent in <span class="math">G<sub><em>I</em></sub>(<em>G</em>)</span> if there exists a non-identity element <span class="math"><em>z</em> ∈ <em>G</em></span> such that x<sup>m</sup>=z=y<sup>n</sup>, for some <span class="math"><em>m</em>, <em>n</em> ∈ N</span>, i.e. <span class="math"><em>x</em> ∼ <em>y</em></span> in <span class="math">G<sub><em>I</em></sub>(<em>G</em>)</span> if <span class="math">⟨<em>x</em>⟩ ∩ ⟨<em>y</em>⟩ ≠ {<em>e</em>}</span> and <span class="math"><em>e</em></span> is adjacent to all other vertices, where <span class="math"><em>e</em></span> is the identity element of the group <span class="math"><em>G</em></span>. Here we show that the graph <span class="math">G<sub><em>I</em></sub>(<em>G</em>)</span> is complete if and only if either <span class="math"><em>G</em></span> is cyclic <span class="math"><em>p</em></span>-group or <span class="math"><em>G</em></span> is a generalized quaternion group. Furthermore, <span class="math">G<sub><em>I</em></sub>(<em>G</em>)</span> is Eulerian if and only if <span class="math">∣<em>G</em>∣</span> is odd. We characterize all abelian groups and also all non-abelian <span class="math"><em>p</em></span>-groups <span class="math"><em>G</em></span>, for which <span class="math">G<sub><em>I</em></sub>(<em>G</em>)</span> is dominatable. Beside, we determine the automorphism group of the graph <span class="math">G<sub><em>I</em></sub>(Z<sub><em>n</em></sub>)</span>, when <span class="math"><em>n</em> ≠ <em>p</em><sup><em>m</em></sup></span>.</p>https://www.ejgta.org/index.php/ejgta/article/view/465automorphism group, intersection power graph, planar, p-groups
spellingShingle Sudip Bera
On the intersection power graph of a finite group
Electronic Journal of Graph Theory and Applications
automorphism group, intersection power graph, planar, p-groups
title On the intersection power graph of a finite group
title_full On the intersection power graph of a finite group
title_fullStr On the intersection power graph of a finite group
title_full_unstemmed On the intersection power graph of a finite group
title_short On the intersection power graph of a finite group
title_sort on the intersection power graph of a finite group
topic automorphism group, intersection power graph, planar, p-groups
url https://www.ejgta.org/index.php/ejgta/article/view/465
work_keys_str_mv AT sudipbera ontheintersectionpowergraphofafinitegroup