Modelling the impact of a Schistosoma mansoni vaccine and mass drug administration to achieve morbidity control and transmission elimination.
Mass drug administration (MDA) is, and has been, the principal method for the control of the schistosome helminths. Using MDA only is unlikely to eliminate the infection in areas of high transmission and the implementation of other measures such as reduced water contact improved hygiene and sanitati...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Public Library of Science (PLoS)
2019-06-01
|
Series: | PLoS Neglected Tropical Diseases |
Online Access: | https://doi.org/10.1371/journal.pntd.0007349 |
_version_ | 1827378763446353920 |
---|---|
author | Klodeta Kura James E Truscott Jaspreet Toor Roy M Anderson |
author_facet | Klodeta Kura James E Truscott Jaspreet Toor Roy M Anderson |
author_sort | Klodeta Kura |
collection | DOAJ |
description | Mass drug administration (MDA) is, and has been, the principal method for the control of the schistosome helminths. Using MDA only is unlikely to eliminate the infection in areas of high transmission and the implementation of other measures such as reduced water contact improved hygiene and sanitation are required. Ideally a vaccine is needed to ensure long term benefits and eliminate the need for repeated drug treatment since infection does not seem to induce lasting protective immunity. Currently, a candidate vaccine is under trial in a baboon animal model, and very encouraging results have been reported. In this paper, we develop an individual-based stochastic model to evaluate the effect of a vaccine with similar properties in humans to those recorded in baboons in achieving the World Health Organization (WHO) goals of morbidity control and elimination as a public health problem in populations living in a variety of transmission settings. MDA and vaccination assuming different durations of protection and coverage levels, alone or in combination, are examined as treatment strategies to reach the WHO goals of the elimination of morbidity and mortality in the coming decade. We find that the efficacy of a vaccine as an adjunct or main control tool will depend critically on a number of factors including the average duration of protection it provides, vaccine efficacy and the baseline prevalence prior to immunization. In low prevalence settings, simulations suggest that the WHO goals can be achieved for all treatment strategies. In moderate prevalence settings, a vaccine that provides 5 years of protection, can achieve both goals within 15 years of treatment. In high prevalence settings, by vaccinating at age 1, 6 and 11 we can achieve the morbidity control with a probability of nearly 0.89 but we cannot achieve elimination as a public health problem goal. A combined vaccination and MDA treatment plan has the greatest chance of achieving the WHO goals in the shorter term. |
first_indexed | 2024-03-08T13:01:35Z |
format | Article |
id | doaj.art-bf337114637d4d74a3f650953b470a2a |
institution | Directory Open Access Journal |
issn | 1935-2727 1935-2735 |
language | English |
last_indexed | 2024-03-08T13:01:35Z |
publishDate | 2019-06-01 |
publisher | Public Library of Science (PLoS) |
record_format | Article |
series | PLoS Neglected Tropical Diseases |
spelling | doaj.art-bf337114637d4d74a3f650953b470a2a2024-01-19T05:48:13ZengPublic Library of Science (PLoS)PLoS Neglected Tropical Diseases1935-27271935-27352019-06-01136e000734910.1371/journal.pntd.0007349Modelling the impact of a Schistosoma mansoni vaccine and mass drug administration to achieve morbidity control and transmission elimination.Klodeta KuraJames E TruscottJaspreet ToorRoy M AndersonMass drug administration (MDA) is, and has been, the principal method for the control of the schistosome helminths. Using MDA only is unlikely to eliminate the infection in areas of high transmission and the implementation of other measures such as reduced water contact improved hygiene and sanitation are required. Ideally a vaccine is needed to ensure long term benefits and eliminate the need for repeated drug treatment since infection does not seem to induce lasting protective immunity. Currently, a candidate vaccine is under trial in a baboon animal model, and very encouraging results have been reported. In this paper, we develop an individual-based stochastic model to evaluate the effect of a vaccine with similar properties in humans to those recorded in baboons in achieving the World Health Organization (WHO) goals of morbidity control and elimination as a public health problem in populations living in a variety of transmission settings. MDA and vaccination assuming different durations of protection and coverage levels, alone or in combination, are examined as treatment strategies to reach the WHO goals of the elimination of morbidity and mortality in the coming decade. We find that the efficacy of a vaccine as an adjunct or main control tool will depend critically on a number of factors including the average duration of protection it provides, vaccine efficacy and the baseline prevalence prior to immunization. In low prevalence settings, simulations suggest that the WHO goals can be achieved for all treatment strategies. In moderate prevalence settings, a vaccine that provides 5 years of protection, can achieve both goals within 15 years of treatment. In high prevalence settings, by vaccinating at age 1, 6 and 11 we can achieve the morbidity control with a probability of nearly 0.89 but we cannot achieve elimination as a public health problem goal. A combined vaccination and MDA treatment plan has the greatest chance of achieving the WHO goals in the shorter term.https://doi.org/10.1371/journal.pntd.0007349 |
spellingShingle | Klodeta Kura James E Truscott Jaspreet Toor Roy M Anderson Modelling the impact of a Schistosoma mansoni vaccine and mass drug administration to achieve morbidity control and transmission elimination. PLoS Neglected Tropical Diseases |
title | Modelling the impact of a Schistosoma mansoni vaccine and mass drug administration to achieve morbidity control and transmission elimination. |
title_full | Modelling the impact of a Schistosoma mansoni vaccine and mass drug administration to achieve morbidity control and transmission elimination. |
title_fullStr | Modelling the impact of a Schistosoma mansoni vaccine and mass drug administration to achieve morbidity control and transmission elimination. |
title_full_unstemmed | Modelling the impact of a Schistosoma mansoni vaccine and mass drug administration to achieve morbidity control and transmission elimination. |
title_short | Modelling the impact of a Schistosoma mansoni vaccine and mass drug administration to achieve morbidity control and transmission elimination. |
title_sort | modelling the impact of a schistosoma mansoni vaccine and mass drug administration to achieve morbidity control and transmission elimination |
url | https://doi.org/10.1371/journal.pntd.0007349 |
work_keys_str_mv | AT klodetakura modellingtheimpactofaschistosomamansonivaccineandmassdrugadministrationtoachievemorbiditycontrolandtransmissionelimination AT jamesetruscott modellingtheimpactofaschistosomamansonivaccineandmassdrugadministrationtoachievemorbiditycontrolandtransmissionelimination AT jaspreettoor modellingtheimpactofaschistosomamansonivaccineandmassdrugadministrationtoachievemorbiditycontrolandtransmissionelimination AT roymanderson modellingtheimpactofaschistosomamansonivaccineandmassdrugadministrationtoachievemorbiditycontrolandtransmissionelimination |