SERPENT/SUBCHANFLOW COUPLED CALCULATIONS FOR A VVER CORE AT HOT FULL POWER

An increasing interest on the development of highly accurate methodologies in reactor physics is nowadays observed, mainly stimulated by the availability of vast computational resources. As a result, an on-going development of a wide range of coupled calculation tools is observed within diverse proj...

Full description

Bibliographic Details
Main Authors: Ferraro Diego, García Manuel, Imke Uwe, Valtavirta Ville, Tuominen Riku, Bilodid Yuri, Leppänen Jaakko, Sanchez-Espinoza Víctor
Format: Article
Language:English
Published: EDP Sciences 2021-01-01
Series:EPJ Web of Conferences
Subjects:
Online Access:https://www.epj-conferences.org/articles/epjconf/pdf/2021/01/epjconf_physor2020_04006.pdf
Description
Summary:An increasing interest on the development of highly accurate methodologies in reactor physics is nowadays observed, mainly stimulated by the availability of vast computational resources. As a result, an on-going development of a wide range of coupled calculation tools is observed within diverse projects worldwide. Under this framework, the McSAFE European Union project is a coordinated effort aimed to develop multiphysics tools based on Monte Carlo neutron transport and subchannel thermal-hydraulics codes. These tools are aimed to be suitable for high-fidelity calculations both for PWR and VVER reactors, with the final goal of performing pin-by-pin coupled calculations at full core scope including burnup. Several intermediate steps are to be analyzed in-depth before jumping into this final goal in order to provide insights and to identify resources requirements. As part of this process, this work presents the results for a pin-by-pin coupling calculation using the Serpent 2 code (developed by VTT, Finland) and the subchannel code SUBCHANFLOW (SCF, developed by KIT, Germany) for a full-core VVER model. For such purpose, a recently refurbished master-slave coupling scheme is used within a High Performance Computing architecture. A full-core benchmark for a VVER-1000 that provides experimental data is considered, where the first burnup step (i.e. fresh core at hot-full rated power state) is calculated. For such purpose a detailed (i.e. pin-by-pin) coupled Serpent-SCF model is developed, including a simplified equilibrium xenon distribution (i.e. by fuel assembly). Comparisons with main global reported results are presented and briefly discussed, together with a raw estimation of resources requirements and a brief demonstration of the inherent capabilities of the proposed approach. The results presented here provide valuable insights and pave the way to tackle the final goals of the on-going high-fidelity project.
ISSN:2100-014X