Link Prediction with Continuous-Time Classical and Quantum Walks

Protein–protein interaction (PPI) networks consist of the physical and/or functional interactions between the proteins of an organism, and they form the basis for the field of network medicine. Since the biophysical and high-throughput methods used to form PPI networks are expensive, time-consuming,...

Full description

Bibliographic Details
Main Authors: Mark Goldsmith, Harto Saarinen, Guillermo García-Pérez, Joonas Malmi, Matteo A. C. Rossi, Sabrina Maniscalco
Format: Article
Language:English
Published: MDPI AG 2023-04-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/25/5/730
Description
Summary:Protein–protein interaction (PPI) networks consist of the physical and/or functional interactions between the proteins of an organism, and they form the basis for the field of network medicine. Since the biophysical and high-throughput methods used to form PPI networks are expensive, time-consuming, and often contain inaccuracies, the resulting networks are usually incomplete. In order to infer missing interactions in these networks, we propose a novel class of link prediction methods based on continuous-time classical and quantum walks. In the case of quantum walks, we examine the usage of both the network adjacency and Laplacian matrices for specifying the walk dynamics. We define a score function based on the corresponding transition probabilities and perform tests on six real-world PPI datasets. Our results show that continuous-time classical random walks and quantum walks using the network adjacency matrix can successfully predict missing protein–protein interactions, with performance rivalling the state-of-the-art.
ISSN:1099-4300