On Higher Order Structures in Thermodynamics

We present the development of the approach to thermodynamics based on measurement. First of all, we recall that considering classical thermodynamics as a theory of measurement of extensive variables one gets the description of thermodynamic states as Legendrian or Lagrangian manifolds representing t...

Full description

Bibliographic Details
Main Authors: Valentin Lychagin, Mikhail Roop
Format: Article
Language:English
Published: MDPI AG 2020-10-01
Series:Entropy
Subjects:
Online Access:https://www.mdpi.com/1099-4300/22/10/1147
Description
Summary:We present the development of the approach to thermodynamics based on measurement. First of all, we recall that considering classical thermodynamics as a theory of measurement of extensive variables one gets the description of thermodynamic states as Legendrian or Lagrangian manifolds representing the average of measurable quantities and extremal measures. Secondly, the variance of random vectors induces the Riemannian structures on the corresponding manifolds. Computing higher order central moments, one drives to the corresponding higher order structures, namely the cubic and the fourth order forms. The cubic form is responsible for the skewness of the extremal distribution. The condition for it to be zero gives us so-called symmetric processes. The positivity of the fourth order structure gives us an additional requirement to thermodynamic state.
ISSN:1099-4300