Experimental Investigation into Natural Convection Heat Transfer inside Triangular Enclosure with Internal Hot Cylinder

Natural convection air heat transfer and fluid movement currents around a hot circular cylinder inside an inclined triangular enclosure has been analyzed experimentally. Three different sizes of an enclosure with a long side of 20, 25, and 30 cm, the thickness of 1 mm, and depth of 50 cm were used...

Full description

Bibliographic Details
Main Authors: Akeel Abdullah Mohammed, Ansam Adil Mohammed, Shylesha V. Channapattanac
Format: Article
Language:English
Published: Al-Nahrain Journal for Engineering Sciences 2023-10-01
Series:مجلة النهرين للعلوم الهندسية
Subjects:
Online Access:https://nahje.com/index.php/main/article/view/1058
_version_ 1797643761971363840
author Akeel Abdullah Mohammed
Ansam Adil Mohammed
Shylesha V. Channapattanac
author_facet Akeel Abdullah Mohammed
Ansam Adil Mohammed
Shylesha V. Channapattanac
author_sort Akeel Abdullah Mohammed
collection DOAJ
description Natural convection air heat transfer and fluid movement currents around a hot circular cylinder inside an inclined triangular enclosure has been analyzed experimentally. Three different sizes of an enclosure with a long side of 20, 25, and 30 cm, the thickness of 1 mm, and depth of 50 cm were used in the present work to give three radius ratios. The effect of Rayleigh number, radius ratio, the rotation angle of triangle enclosure, and the inclination angle of the apparatus with horizontal axis ? on the heat transfer process was investigated. The ranges of these parameters were: Rayleigh number from 5×106 to 2.5×108, radius ratio (0.345, 0.455, and 0.618), rotation angle (0o, 45o, and 90o), and inclination angle (0o, 45o and 90o). The results show that the heat transfer rates increase with increase in Rayleigh number and as the rotation angle of enclosure is changed from 0o to 90o. Moreover, the heat transfer rate increases linearly with Rayleigh number at higher radius at rotation angle 0o, 90o only. While, it increases slightly with Rayleigh number at rotation angle 45o. Additionally, the higher heat transfer rates occur at vertical position of enclosure inclination angle 90o and rotation angle 0o (the base of triangle at the bottom) and it decreases as inclination angle deviates from 90o to 0o. This behavior is reverse completely at higher radius ratio 0.618. Empirical correlations for the average Nusselt number has been found to depend on Rayleigh number., radius ratio, rotation angle and inclination angle.
first_indexed 2024-03-11T14:20:42Z
format Article
id doaj.art-bf5661892b4345e69472f28bf96ac30a
institution Directory Open Access Journal
issn 2521-9154
2521-9162
language English
last_indexed 2024-03-11T14:20:42Z
publishDate 2023-10-01
publisher Al-Nahrain Journal for Engineering Sciences
record_format Article
series مجلة النهرين للعلوم الهندسية
spelling doaj.art-bf5661892b4345e69472f28bf96ac30a2023-10-31T17:34:12ZengAl-Nahrain Journal for Engineering Sciencesمجلة النهرين للعلوم الهندسية2521-91542521-91622023-10-0126310.29194/NJES.26030175Experimental Investigation into Natural Convection Heat Transfer inside Triangular Enclosure with Internal Hot CylinderAkeel Abdullah Mohammed0Ansam Adil Mohammed1Shylesha V. Channapattanac2Dept. of Mechanical Eng., Col-lege of Engineering, Al-Nahrain University, Baghdad- Iraq.Dept. of Mechanical Eng., Col-lege of Engineering, Al-Nahrain University, Baghdad- Iraq.Mechanical Engineering KLS Vishwanathrao Deshpande Institute of Technology, Hali-yal, Karnataka, India. Natural convection air heat transfer and fluid movement currents around a hot circular cylinder inside an inclined triangular enclosure has been analyzed experimentally. Three different sizes of an enclosure with a long side of 20, 25, and 30 cm, the thickness of 1 mm, and depth of 50 cm were used in the present work to give three radius ratios. The effect of Rayleigh number, radius ratio, the rotation angle of triangle enclosure, and the inclination angle of the apparatus with horizontal axis ? on the heat transfer process was investigated. The ranges of these parameters were: Rayleigh number from 5×106 to 2.5×108, radius ratio (0.345, 0.455, and 0.618), rotation angle (0o, 45o, and 90o), and inclination angle (0o, 45o and 90o). The results show that the heat transfer rates increase with increase in Rayleigh number and as the rotation angle of enclosure is changed from 0o to 90o. Moreover, the heat transfer rate increases linearly with Rayleigh number at higher radius at rotation angle 0o, 90o only. While, it increases slightly with Rayleigh number at rotation angle 45o. Additionally, the higher heat transfer rates occur at vertical position of enclosure inclination angle 90o and rotation angle 0o (the base of triangle at the bottom) and it decreases as inclination angle deviates from 90o to 0o. This behavior is reverse completely at higher radius ratio 0.618. Empirical correlations for the average Nusselt number has been found to depend on Rayleigh number., radius ratio, rotation angle and inclination angle. https://nahje.com/index.php/main/article/view/1058Laminar FlowNatural ConvectionTriangular EnclosureInclination AngleCircular Cylinder
spellingShingle Akeel Abdullah Mohammed
Ansam Adil Mohammed
Shylesha V. Channapattanac
Experimental Investigation into Natural Convection Heat Transfer inside Triangular Enclosure with Internal Hot Cylinder
مجلة النهرين للعلوم الهندسية
Laminar Flow
Natural Convection
Triangular Enclosure
Inclination Angle
Circular Cylinder
title Experimental Investigation into Natural Convection Heat Transfer inside Triangular Enclosure with Internal Hot Cylinder
title_full Experimental Investigation into Natural Convection Heat Transfer inside Triangular Enclosure with Internal Hot Cylinder
title_fullStr Experimental Investigation into Natural Convection Heat Transfer inside Triangular Enclosure with Internal Hot Cylinder
title_full_unstemmed Experimental Investigation into Natural Convection Heat Transfer inside Triangular Enclosure with Internal Hot Cylinder
title_short Experimental Investigation into Natural Convection Heat Transfer inside Triangular Enclosure with Internal Hot Cylinder
title_sort experimental investigation into natural convection heat transfer inside triangular enclosure with internal hot cylinder
topic Laminar Flow
Natural Convection
Triangular Enclosure
Inclination Angle
Circular Cylinder
url https://nahje.com/index.php/main/article/view/1058
work_keys_str_mv AT akeelabdullahmohammed experimentalinvestigationintonaturalconvectionheattransferinsidetriangularenclosurewithinternalhotcylinder
AT ansamadilmohammed experimentalinvestigationintonaturalconvectionheattransferinsidetriangularenclosurewithinternalhotcylinder
AT shyleshavchannapattanac experimentalinvestigationintonaturalconvectionheattransferinsidetriangularenclosurewithinternalhotcylinder