Summary: | The electric fault arc, particularly the series arc, leads to plenty of electrical fire. The limitations of t previous studies include: (1) most existing research focused on gaseous atmospheres rather than solids materials, which is contrary to the actual demand; and (2) the studied external heat sources were restricted to cone heaters and flames, while the electric arc was seldom studied. To overcome these limitations, we developed an experimental platform to investigate the flame behavior when cable insulation material was ignited by the fault arc. We proposed a flame-extracting and noise-reduction algorithm to process the enormous number of photos shot by the high-speed camera. The main obtained findings were: (1) the appropriate size of the structuring element plays an essential role in filtering the flame region in the photos, too small a size resulted in the wrong recognition of incandescent particles, while too large a size made a jagged distortion; (2) the mean flame area increased as the system load grew; (3) The flame size became more prominent, and the flame appeared more frequently in specific locations when the system load increased. The in-depth understanding of flame behavior provided by this work will help to optimize the design of electric systems and disaster prevention reduction.
|