Reverse-engineering of gene networks for regulating early blood development from single-cell measurements

Abstract Background Recent advances in omics technologies have raised great opportunities to study large-scale regulatory networks inside the cell. In addition, single-cell experiments have measured the gene and protein activities in a large number of cells under the same experimental conditions. Ho...

Full description

Bibliographic Details
Main Authors: Jiangyong Wei, Xiaohua Hu, Xiufen Zou, Tianhai Tian
Format: Article
Language:English
Published: BMC 2017-12-01
Series:BMC Medical Genomics
Subjects:
Online Access:http://link.springer.com/article/10.1186/s12920-017-0312-z
_version_ 1818865745540415488
author Jiangyong Wei
Xiaohua Hu
Xiufen Zou
Tianhai Tian
author_facet Jiangyong Wei
Xiaohua Hu
Xiufen Zou
Tianhai Tian
author_sort Jiangyong Wei
collection DOAJ
description Abstract Background Recent advances in omics technologies have raised great opportunities to study large-scale regulatory networks inside the cell. In addition, single-cell experiments have measured the gene and protein activities in a large number of cells under the same experimental conditions. However, a significant challenge in computational biology and bioinformatics is how to derive quantitative information from the single-cell observations and how to develop sophisticated mathematical models to describe the dynamic properties of regulatory networks using the derived quantitative information. Methods This work designs an integrated approach to reverse-engineer gene networks for regulating early blood development based on singel-cell experimental observations. The wanderlust algorithm is initially used to develop the pseudo-trajectory for the activities of a number of genes. Since the gene expression data in the developed pseudo-trajectory show large fluctuations, we then use Gaussian process regression methods to smooth the gene express data in order to obtain pseudo-trajectories with much less fluctuations. The proposed integrated framework consists of both bioinformatics algorithms to reconstruct the regulatory network and mathematical models using differential equations to describe the dynamics of gene expression. Results The developed approach is applied to study the network regulating early blood cell development. A graphic model is constructed for a regulatory network with forty genes and a dynamic model using differential equations is developed for a network of nine genes. Numerical results suggests that the proposed model is able to match experimental data very well. We also examine the networks with more regulatory relations and numerical results show that more regulations may exist. We test the possibility of auto-regulation but numerical simulations do not support the positive auto-regulation. In addition, robustness is used as an importantly additional criterion to select candidate networks. Conclusion The research results in this work shows that the developed approach is an efficient and effective method to reverse-engineer gene networks using single-cell experimental observations.
first_indexed 2024-12-19T10:52:26Z
format Article
id doaj.art-bf7b5d22dbae462488390ad0d03f2e3a
institution Directory Open Access Journal
issn 1755-8794
language English
last_indexed 2024-12-19T10:52:26Z
publishDate 2017-12-01
publisher BMC
record_format Article
series BMC Medical Genomics
spelling doaj.art-bf7b5d22dbae462488390ad0d03f2e3a2022-12-21T20:24:57ZengBMCBMC Medical Genomics1755-87942017-12-0110S5314310.1186/s12920-017-0312-zReverse-engineering of gene networks for regulating early blood development from single-cell measurementsJiangyong Wei0Xiaohua Hu1Xiufen Zou2Tianhai Tian3School of Statistics and Mathematics, Zhongnan University of Economics and LawSchool of Computer, Central China Normal UniversitySchool of Mathematics and Statistics, Wuhan UniversitySchool of Mathematical Sciences, Monash UniversityAbstract Background Recent advances in omics technologies have raised great opportunities to study large-scale regulatory networks inside the cell. In addition, single-cell experiments have measured the gene and protein activities in a large number of cells under the same experimental conditions. However, a significant challenge in computational biology and bioinformatics is how to derive quantitative information from the single-cell observations and how to develop sophisticated mathematical models to describe the dynamic properties of regulatory networks using the derived quantitative information. Methods This work designs an integrated approach to reverse-engineer gene networks for regulating early blood development based on singel-cell experimental observations. The wanderlust algorithm is initially used to develop the pseudo-trajectory for the activities of a number of genes. Since the gene expression data in the developed pseudo-trajectory show large fluctuations, we then use Gaussian process regression methods to smooth the gene express data in order to obtain pseudo-trajectories with much less fluctuations. The proposed integrated framework consists of both bioinformatics algorithms to reconstruct the regulatory network and mathematical models using differential equations to describe the dynamics of gene expression. Results The developed approach is applied to study the network regulating early blood cell development. A graphic model is constructed for a regulatory network with forty genes and a dynamic model using differential equations is developed for a network of nine genes. Numerical results suggests that the proposed model is able to match experimental data very well. We also examine the networks with more regulatory relations and numerical results show that more regulations may exist. We test the possibility of auto-regulation but numerical simulations do not support the positive auto-regulation. In addition, robustness is used as an importantly additional criterion to select candidate networks. Conclusion The research results in this work shows that the developed approach is an efficient and effective method to reverse-engineer gene networks using single-cell experimental observations.http://link.springer.com/article/10.1186/s12920-017-0312-zGenetic regulatory networkBlood stem cellSingle-cell experimentGraphic modelDynamic model
spellingShingle Jiangyong Wei
Xiaohua Hu
Xiufen Zou
Tianhai Tian
Reverse-engineering of gene networks for regulating early blood development from single-cell measurements
BMC Medical Genomics
Genetic regulatory network
Blood stem cell
Single-cell experiment
Graphic model
Dynamic model
title Reverse-engineering of gene networks for regulating early blood development from single-cell measurements
title_full Reverse-engineering of gene networks for regulating early blood development from single-cell measurements
title_fullStr Reverse-engineering of gene networks for regulating early blood development from single-cell measurements
title_full_unstemmed Reverse-engineering of gene networks for regulating early blood development from single-cell measurements
title_short Reverse-engineering of gene networks for regulating early blood development from single-cell measurements
title_sort reverse engineering of gene networks for regulating early blood development from single cell measurements
topic Genetic regulatory network
Blood stem cell
Single-cell experiment
Graphic model
Dynamic model
url http://link.springer.com/article/10.1186/s12920-017-0312-z
work_keys_str_mv AT jiangyongwei reverseengineeringofgenenetworksforregulatingearlyblooddevelopmentfromsinglecellmeasurements
AT xiaohuahu reverseengineeringofgenenetworksforregulatingearlyblooddevelopmentfromsinglecellmeasurements
AT xiufenzou reverseengineeringofgenenetworksforregulatingearlyblooddevelopmentfromsinglecellmeasurements
AT tianhaitian reverseengineeringofgenenetworksforregulatingearlyblooddevelopmentfromsinglecellmeasurements