Design of Control Law of Post Stall Maneuver under Unsteady Aerodynamics Based on Improved Dynamic Inverse Method

In this paper, a practical improved dynamic inverse control method is proposed to solve the large control error and control hysteresis of post stall maneuver under unsteady aerodynamics. Firstly, depending on the wind tunnel experimental data of the advanced fighter aircraft model under biaxial coup...

Full description

Bibliographic Details
Format: Article
Language:zho
Published: EDP Sciences 2019-06-01
Series:Xibei Gongye Daxue Xuebao
Subjects:
Online Access:https://www.jnwpu.org/articles/jnwpu/full_html/2019/03/jnwpu2019373p523/jnwpu2019373p523.html
Description
Summary:In this paper, a practical improved dynamic inverse control method is proposed to solve the large control error and control hysteresis of post stall maneuver under unsteady aerodynamics. Firstly, depending on the wind tunnel experimental data of the advanced fighter aircraft model under biaxial coupled large oscillation, an accurate unsteady aerodynamic model is established by using the improved extreme learning machine (ELM) method. Secondly, in terms of the time scale separation, the control error caused by unsteady aerodynamic is reduced by adding integral in the fast loop, and the control delay caused by unsteady aerodynamic is eliminated by applying the lag correction link in the slower loop. The deflections of conventional aerodynamic surface and thrust vector are allocated by the daisy chain method. Finally, the formula of the reduced frequency, which is the key factor in the unsteady aerodynamic modelling process, is derived by analyzing the wind tunnel data. The effectiveness of the present method for the scaled model is verified by herbst post stall maneuver. The present work provides a practical and reliable way for the flight test of post stall maneuver.
ISSN:1000-2758
2609-7125