Asymptotic behavior of mild solutions for a class of abstract nonlinear difference equations of convolution type

Abstract We prove the existence and uniqueness of a weighted pseudo asymptotically mild solution to the following class of abstract semilinear difference equations: u(n+1)=A∑k=−∞na(n−k)u(k+1)+∑k=−∞nb(n−k)f(k,u(k)),n∈Z, $$ u(n+1)= A \sum_{k=-\infty }^{n} a(n-k)u(k+1)+ \sum _{k=-\infty }^{n} b(n-k)f\b...

Full description

Bibliographic Details
Main Authors: Valentin Keyantuo, Carlos Lizama, Silvia Rueda, Mahamadi Warma
Format: Article
Language:English
Published: SpringerOpen 2019-06-01
Series:Advances in Difference Equations
Subjects:
Online Access:http://link.springer.com/article/10.1186/s13662-019-2189-y
_version_ 1818283913076801536
author Valentin Keyantuo
Carlos Lizama
Silvia Rueda
Mahamadi Warma
author_facet Valentin Keyantuo
Carlos Lizama
Silvia Rueda
Mahamadi Warma
author_sort Valentin Keyantuo
collection DOAJ
description Abstract We prove the existence and uniqueness of a weighted pseudo asymptotically mild solution to the following class of abstract semilinear difference equations: u(n+1)=A∑k=−∞na(n−k)u(k+1)+∑k=−∞nb(n−k)f(k,u(k)),n∈Z, $$ u(n+1)= A \sum_{k=-\infty }^{n} a(n-k)u(k+1)+ \sum _{k=-\infty }^{n} b(n-k)f\bigl(k,u(k)\bigr),\quad n\in \mathbb{Z}, $$ where A is the generator of a resolvent sequence {S(n)}n∈N0 $\{S(n)\}_{n\in \mathbb{N}_{0}}$ of bounded and linear operators defined in a Banach space X, the sequences a,b $a, b$ are complex-valued, and f∈l1(Z×X,X) $f\in l^{1}( \mathbb{Z}\times X, X)$.
first_indexed 2024-12-13T00:44:27Z
format Article
id doaj.art-bfed763bd73648419d2a8a45c3b2cffe
institution Directory Open Access Journal
issn 1687-1847
language English
last_indexed 2024-12-13T00:44:27Z
publishDate 2019-06-01
publisher SpringerOpen
record_format Article
series Advances in Difference Equations
spelling doaj.art-bfed763bd73648419d2a8a45c3b2cffe2022-12-22T00:05:04ZengSpringerOpenAdvances in Difference Equations1687-18472019-06-012019112910.1186/s13662-019-2189-yAsymptotic behavior of mild solutions for a class of abstract nonlinear difference equations of convolution typeValentin Keyantuo0Carlos Lizama1Silvia Rueda2Mahamadi Warma3Department of Mathematics, Faculty of Natural Sciences, University of Puerto RicoDepartamento de Matemática y Ciencia de la Computación, Facultad de Ciencias, Universidad de Santiago de ChileDepartamento de Matemática y Ciencia de la Computación, Facultad de Ciencias, Universidad de Santiago de ChileDepartment of Mathematics, Faculty of Natural Sciences, University of Puerto RicoAbstract We prove the existence and uniqueness of a weighted pseudo asymptotically mild solution to the following class of abstract semilinear difference equations: u(n+1)=A∑k=−∞na(n−k)u(k+1)+∑k=−∞nb(n−k)f(k,u(k)),n∈Z, $$ u(n+1)= A \sum_{k=-\infty }^{n} a(n-k)u(k+1)+ \sum _{k=-\infty }^{n} b(n-k)f\bigl(k,u(k)\bigr),\quad n\in \mathbb{Z}, $$ where A is the generator of a resolvent sequence {S(n)}n∈N0 $\{S(n)\}_{n\in \mathbb{N}_{0}}$ of bounded and linear operators defined in a Banach space X, the sequences a,b $a, b$ are complex-valued, and f∈l1(Z×X,X) $f\in l^{1}( \mathbb{Z}\times X, X)$.http://link.springer.com/article/10.1186/s13662-019-2189-yWeighted pseudo asymptotically mild solutionsAbstract difference equationsResolvent sequences of operators
spellingShingle Valentin Keyantuo
Carlos Lizama
Silvia Rueda
Mahamadi Warma
Asymptotic behavior of mild solutions for a class of abstract nonlinear difference equations of convolution type
Advances in Difference Equations
Weighted pseudo asymptotically mild solutions
Abstract difference equations
Resolvent sequences of operators
title Asymptotic behavior of mild solutions for a class of abstract nonlinear difference equations of convolution type
title_full Asymptotic behavior of mild solutions for a class of abstract nonlinear difference equations of convolution type
title_fullStr Asymptotic behavior of mild solutions for a class of abstract nonlinear difference equations of convolution type
title_full_unstemmed Asymptotic behavior of mild solutions for a class of abstract nonlinear difference equations of convolution type
title_short Asymptotic behavior of mild solutions for a class of abstract nonlinear difference equations of convolution type
title_sort asymptotic behavior of mild solutions for a class of abstract nonlinear difference equations of convolution type
topic Weighted pseudo asymptotically mild solutions
Abstract difference equations
Resolvent sequences of operators
url http://link.springer.com/article/10.1186/s13662-019-2189-y
work_keys_str_mv AT valentinkeyantuo asymptoticbehaviorofmildsolutionsforaclassofabstractnonlineardifferenceequationsofconvolutiontype
AT carloslizama asymptoticbehaviorofmildsolutionsforaclassofabstractnonlineardifferenceequationsofconvolutiontype
AT silviarueda asymptoticbehaviorofmildsolutionsforaclassofabstractnonlineardifferenceequationsofconvolutiontype
AT mahamadiwarma asymptoticbehaviorofmildsolutionsforaclassofabstractnonlineardifferenceequationsofconvolutiontype