On a Pólya’s inequality for planar convex sets

In this short note, we prove that for every bounded, planar and convex set $\Omega $, one has \[ \frac{\lambda _1(\Omega )T(\Omega )}{|\Omega |}\le \frac{\pi ^2}{12}\cdot \left(1+\sqrt{\pi }\frac{r(\Omega )}{\sqrt{|\Omega |}}\right)^2, \] where $\lambda _1$, $T$, $r$ and $|{\,\cdot \,}|$ are the fir...

Full description

Bibliographic Details
Main Author: Ftouhi, Ilias
Format: Article
Language:English
Published: Académie des sciences 2022-03-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.292/

Similar Items