Summary: | Abstract Background This study used a short-term de-training model to mimic the physiological weight changes during the early retirement stage in Taekwondo (TKD) athletes. This study investigates whether the negative changes in body composition, blood lipid profiles, and metabolic biomarkers occur in elite collegiate TKD athletes when experiencing a two-months de-training period. Methods Fourteen collegiate Division Ι elite TKD athletes (age: 21.1 ± 0.2 years, BMI: 22.3 ± 1.1 kg/m2; 10 males and 4 females) participated in this study. The body composition, blood lipid profiles, atherogenic dyslipidemia indexes, metabolic biomarkers and baseline systemic inflammation states were measured before and after two-months de-training. Results The body weight and BMI did not change after de-training in these elite TKD athletes. The total muscle mass displayed a significant decline after de-training (−2.0%, p = 0.019), with an increase in fat mass (+24.3%, p < 0.01). The blood triglyceride did not change, but the total cholesterol was higher after de-training (+8.3%, p = 0.047). The CHOL-to-HDL and LDL-to-HDL ratios increased by 12.4% (p < 0.001) and 13.2% (p = 0.002) after de-training, respectively. The blood platelet number, plateletcrit, and platelet-to-lymphocyte ratio increased significantly by 5.0% (p = 0.013), 7.3% (p = 0.009), and 20.6% (p = 0.018) after de-training, respectively. The McAuley’s Index decreased (−6.9%, p = 0.025) after de-training. Conclusion We demonstrated that a two-months de-training period resulted in adverse effects on early atherogenic dyslipidemia development, progressing insulin resistance, low-grade inflammation, and visceral adiposity in young elite TKD athletes. Our findings provide clear insights into the possible deleterious impacts at early stage retirement in former combative sports athletes.
|