Gaussian Volterra processes with power-type kernels. Part I

The stochastic process of the form \[ {X_{t}}={\int _{0}^{t}}{s^{\alpha }}\left({\int _{s}^{t}}{u^{\beta }}{(u-s)^{\gamma }}\hspace{0.1667em}du\right)\hspace{0.1667em}d{W_{s}}\] is considered, where W is a standard Wiener process, $\alpha >-\frac{1}{2}$, $\gamma >-1$, and $\alpha +\beta +...

Full description

Bibliographic Details
Main Authors: Yuliya Mishura, Sergiy Shklyar
Format: Article
Language:English
Published: VTeX 2022-04-01
Series:Modern Stochastics: Theory and Applications
Subjects:
Online Access:https://www.vmsta.org/doi/10.15559/22-VMSTA205
_version_ 1818163482415071232
author Yuliya Mishura
Sergiy Shklyar
author_facet Yuliya Mishura
Sergiy Shklyar
author_sort Yuliya Mishura
collection DOAJ
description The stochastic process of the form \[ {X_{t}}={\int _{0}^{t}}{s^{\alpha }}\left({\int _{s}^{t}}{u^{\beta }}{(u-s)^{\gamma }}\hspace{0.1667em}du\right)\hspace{0.1667em}d{W_{s}}\] is considered, where W is a standard Wiener process, $\alpha >-\frac{1}{2}$, $\gamma >-1$, and $\alpha +\beta +\gamma >-\frac{3}{2}$. It is proved that the process X is well-defined and continuous. The asymptotic properties of the variances and bounds for the variances of the increments of the process X are studied. It is also proved that the process X satisfies the single-point Hölder condition up to order $\alpha +\beta +\gamma +\frac{3}{2}$ at point 0, the “interval” Hölder condition up to order $\min \big(\gamma +\frac{3}{2},\hspace{0.2222em}1\big)$ on the interval $[{t_{0}},T]$ (where $0<{t_{0}}<T$), and the Hölder condition up to order $\min \big(\alpha +\beta +\gamma +\frac{3}{2},\hspace{0.2778em}\gamma +\frac{3}{2},\hspace{0.2778em}1\big)$ on the entire interval $[0,T]$.
first_indexed 2024-12-11T16:50:16Z
format Article
id doaj.art-c010189cfe224f9385ec54d8e3f54a30
institution Directory Open Access Journal
issn 2351-6046
2351-6054
language English
last_indexed 2024-12-11T16:50:16Z
publishDate 2022-04-01
publisher VTeX
record_format Article
series Modern Stochastics: Theory and Applications
spelling doaj.art-c010189cfe224f9385ec54d8e3f54a302022-12-22T00:58:07ZengVTeXModern Stochastics: Theory and Applications2351-60462351-60542022-04-019331333810.15559/22-VMSTA205Gaussian Volterra processes with power-type kernels. Part IYuliya Mishura0Sergiy Shklyar1Department of Probability Theory, Statistics and Actuarial Mathematics, Taras Shevchenko National University of Kyiv, 64, Volodymyrska St., 01601 Kyiv, UkraineDepartment of Probability Theory, Statistics and Actuarial Mathematics, Taras Shevchenko National University of Kyiv, 64, Volodymyrska St., 01601 Kyiv, UkraineThe stochastic process of the form \[ {X_{t}}={\int _{0}^{t}}{s^{\alpha }}\left({\int _{s}^{t}}{u^{\beta }}{(u-s)^{\gamma }}\hspace{0.1667em}du\right)\hspace{0.1667em}d{W_{s}}\] is considered, where W is a standard Wiener process, $\alpha >-\frac{1}{2}$, $\gamma >-1$, and $\alpha +\beta +\gamma >-\frac{3}{2}$. It is proved that the process X is well-defined and continuous. The asymptotic properties of the variances and bounds for the variances of the increments of the process X are studied. It is also proved that the process X satisfies the single-point Hölder condition up to order $\alpha +\beta +\gamma +\frac{3}{2}$ at point 0, the “interval” Hölder condition up to order $\min \big(\gamma +\frac{3}{2},\hspace{0.2222em}1\big)$ on the interval $[{t_{0}},T]$ (where $0<{t_{0}}<T$), and the Hölder condition up to order $\min \big(\alpha +\beta +\gamma +\frac{3}{2},\hspace{0.2778em}\gamma +\frac{3}{2},\hspace{0.2778em}1\big)$ on the entire interval $[0,T]$.https://www.vmsta.org/doi/10.15559/22-VMSTA205Gaussian Volterra processesfractional Brownian motionHölder continuityquasi-helix property
spellingShingle Yuliya Mishura
Sergiy Shklyar
Gaussian Volterra processes with power-type kernels. Part I
Modern Stochastics: Theory and Applications
Gaussian Volterra processes
fractional Brownian motion
Hölder continuity
quasi-helix property
title Gaussian Volterra processes with power-type kernels. Part I
title_full Gaussian Volterra processes with power-type kernels. Part I
title_fullStr Gaussian Volterra processes with power-type kernels. Part I
title_full_unstemmed Gaussian Volterra processes with power-type kernels. Part I
title_short Gaussian Volterra processes with power-type kernels. Part I
title_sort gaussian volterra processes with power type kernels part i
topic Gaussian Volterra processes
fractional Brownian motion
Hölder continuity
quasi-helix property
url https://www.vmsta.org/doi/10.15559/22-VMSTA205
work_keys_str_mv AT yuliyamishura gaussianvolterraprocesseswithpowertypekernelsparti
AT sergiyshklyar gaussianvolterraprocesseswithpowertypekernelsparti