Biomechanical study of the fixation stability of broken pedicle screws and subsequent strategies.

Pedicles are often broken when screws are inserted into hard pedicles with small diameters or when the diameter of the screw itself is inadequate. However, there is a lack of biomechanical literature that addresses screw loosening as a result of broken pedicles or the resulting salvage of those scre...

Full description

Bibliographic Details
Main Authors: Ming-Kai Hsieh, Mu-Yi Liu, Jin-Kai Chen, Tsung-Ting Tsai, Po-Liang Lai, Chi-Chien Niu, Ching-Lung Tai
Format: Article
Language:English
Published: Public Library of Science (PLoS) 2019-01-01
Series:PLoS ONE
Online Access:https://doi.org/10.1371/journal.pone.0219189
Description
Summary:Pedicles are often broken when screws are inserted into hard pedicles with small diameters or when the diameter of the screw itself is inadequate. However, there is a lack of biomechanical literature that addresses screw loosening as a result of broken pedicles or the resulting salvage of those screws. We performed a novel in vitro study to compare the pullout strength of screws between intact pedicles and two different types of broken pedicles; strategies to prevent screw loosening were also compared. Thirty L4 Sawbones were designed to represent intact pedicles, semi-pedicles, and nonpedicles and were prepared for screw insertion. Three sizes of polyaxial screws (diameter × length dimensions of 6.0 mm × 45 mm, 6.0 mm × 50 mm and 6.5 mm × 45 mm) were independently and randomly distributed into the intact-pedicle group (IP group, n = 30), the semi-pedicle group (SP group, n = 15), or the nonpedicle group (NP group, n = 15). The experiments were conducted across a minimum of five trials for each of the chosen screw sizes. We then analyzed the results of the imaging, pullout testing, and embedded bone volume. Any fractures or defects of the vertebrae caused by screw insertion were excluded from the study. The appropriate screw trajectory and insertional depth were confirmed using axial and sagittal X-ray imaging prior to screw pullout testing. A pullout strength of only 41% to 45% for the SP group and 29% to 39% for the NP group was retained following a broken pedicle. The use of longer or larger-diameter screws appears to be an effective salvaging procedure for the NP group (p < 0.05). The embedded bone volume percentage analysis indicated that, compared to the IP group, 68% to 76% of effective bone embedded into the screw threads in the SP group, and 58% to 65% in the NP group. There was no direct correlation between the pullout strength and the embedded bone volume; however, less effective embedded bone volume was associated with lower pullout strength. This study describes the evolution of the well-established screw pullout test being applied to the broken pedicle Sawbone testing model. The pedicle plays an important role in determining the pullout strength of a screw. However, a salvage procedure that utilizes a longer or larger-diameter screw might be a reliable clinical approach to address broken pedicles.
ISSN:1932-6203