An Analysis Applying InSAR of Subsidence Caused by Nearby Mining-Induced Earthquakes

Earthquake occurrence is usually unpredictable apart from sites in the vicinity of volcanoes. It is not easy to measure displacements caused by seismic phenomena using classical geodetic methods, which are based on point survey. Therefore, the surveying of ground movements caused by seismic events s...

Full description

Bibliographic Details
Main Authors: Ryszard Hejmanowski, Agnieszka A. Malinowska, Wojciech T. Witkowski, Artur Guzy
Format: Article
Language:English
Published: MDPI AG 2019-11-01
Series:Geosciences
Subjects:
Online Access:https://www.mdpi.com/2076-3263/9/12/490
Description
Summary:Earthquake occurrence is usually unpredictable apart from sites in the vicinity of volcanoes. It is not easy to measure displacements caused by seismic phenomena using classical geodetic methods, which are based on point survey. Therefore, the surveying of ground movements caused by seismic events should be carried out continuously. Nowadays, remote sensing data and InSAR are often applied to monitor ground displacements in areas affected by seismicity. The effects of severe nearby mining-induced earthquakes have been discussed in the paper. The earthquakes occurred in 2017 and had a magnitude of 4.7 and 4.8. The distance between the epicenters of the mining-induced earthquakes was around 1.6 km. The aim of the investigation has been to analyze the spatio-temporal distribution of ground movements caused by the two tremors using the InSAR technique. Superposition of surface displacement has been studied in time and space. The main scientific aim has been to prove that in the areas where high-energy tremors occur, ground movements overlap. Due to proximity between the epicenters, the mining-induced earthquakes caused the formation of a large subsidence trough with the dimension of approximately 1.2 km × 4.2 km and total subsidence of ca. 116 mm. Two-time phases of subsidence were determined with temporal overlapping. The subsidence analysis has enhanced the cognition of the impact of mining-induced seismicity on the kinematics of surface changes. Moreover, the present work supports the thesis that InSAR is a valuable and adequately accurate technique to monitor ground displacements caused by mining induced earthquakes.
ISSN:2076-3263