Combine flake like magnesium hydroxide and cubic like aluminum hydroxide nanostructures in order to improve fire retardant of PVC and PMMA

In this study, Flake-like magnesium hydroxide (Mg(OH)2) and cubic-like aluminum hydroxide (Al(OH)3) nanostructures were synthesized via a simple co-precipitation method at relatively low temperature. Chemical properties and surface morphology of the magnesium hydroxide and aluminum hydroxide were ch...

Full description

Bibliographic Details
Main Authors: Ahmad Gholizadeh, Saeid Jamehbozorgi, Mohammad Yousefi, Ali Niazi
Format: Article
Language:English
Published: Nanoscience and Nanotechnology Research Center, University of Kashan 2019-04-01
Series:Journal of Nanostructures
Subjects:
Online Access:http://jns.kashanu.ac.ir/article_88768_200fb099dc6e3d9cafd6f35b0466fe69.pdf
Description
Summary:In this study, Flake-like magnesium hydroxide (Mg(OH)2) and cubic-like aluminum hydroxide (Al(OH)3) nanostructures were synthesized via a simple co-precipitation method at relatively low temperature. Chemical properties and surface morphology of the magnesium hydroxide and aluminum hydroxide were characterized by X-ray diffraction analysis (XRD), scanning electron microscopy image (SEM), transmission electron microscopy image (TEM), differential scanning calorimetery analysis (DSC) and thermo gravimetric analysis (TGA). Magnesium hydroxide and cubic-like aluminum hydroxide were then added to PVC, Graphite and PMMA polymers. The effect of cooperation between magnesium hydroxide and cubic-like aluminum hydroxide nanostructures on the fire retardant of the polymeric matrixes has been investigated. The results show that the thermal decomposition of the nanocomposites shifts towards higher temperature in the presence of the magnesium hydroxide and cubic-like aluminum hydroxide. As well as, the enhancement of fire retardant of nanocomposites is due to endothermically decomposition of these nanostructures and releases of water and dilutes combustible gases.
ISSN:2251-7871
2251-788X