Set-to-Set Disjoint Paths Problem in Möbius Cubes

The set-to-set disjoint paths problem is to find <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> vertex-disjoint paths <inline-formula> <tex-math notation="LaTeX">${ \boldsymbol s}_{i}\leadsto { \boldsymbol t}_{j_{i...

Full description

Bibliographic Details
Main Authors: Hiroyuki Ichida, Keiichi Kaneko
Format: Article
Language:English
Published: IEEE 2022-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9852209/
Description
Summary:The set-to-set disjoint paths problem is to find <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> vertex-disjoint paths <inline-formula> <tex-math notation="LaTeX">${ \boldsymbol s}_{i}\leadsto { \boldsymbol t}_{j_{i}}$ </tex-math></inline-formula> (<inline-formula> <tex-math notation="LaTeX">$1\le i\le n$ </tex-math></inline-formula>, <inline-formula> <tex-math notation="LaTeX">$\{j_{1},j_{2},\ldots,j_{n}\}=\{1,2,\ldots,n\}$ </tex-math></inline-formula>) between two sets of vertices <inline-formula> <tex-math notation="LaTeX">$S=\{ { \boldsymbol s}_{1}, { \boldsymbol s}_{2},\ldots, { \boldsymbol s}_{n}\}$ </tex-math></inline-formula> and <inline-formula> <tex-math notation="LaTeX">$T=\{ { \boldsymbol t}_{1}, { \boldsymbol t}_{2},\ldots, { \boldsymbol t}_{n}\}$ </tex-math></inline-formula> in a graph whose connectivity is equal to <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>. It is a very important problem as well as the vertex-to-vertex disjoint paths problem and the vertex-to-set disjoint paths problem. In this paper, we propose an algorithm that generates <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula> vertex-disjoint paths between two vertex sets in an <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>-M&#x00F6;bius cube. Much attention has been attracted by a M&#x00F6;bius cube because its diameter is almost half of that of a hypercube while it can interconnect the same number of vertices as the hypercube. We also give a proof of correctness of the algorithm and estimate that the time complexity of the algorithm is <inline-formula> <tex-math notation="LaTeX">$O(n^{6})$ </tex-math></inline-formula> and the maximum length of the paths generated by the algorithm is <inline-formula> <tex-math notation="LaTeX">$2n-2$ </tex-math></inline-formula>.
ISSN:2169-3536