$L^p$-versions of generalized Korn inequalities for incompatible tensor fields in arbitrary dimensions with $p$-integrable exterior derivative

For $n\ge 2$ and $1 we prove an $L^p$-version of the generalized Korn-type inequality for incompatible, $p$-integrable tensor fields $P:\Omega \rightarrow \mathbb{R}^{n\,\times \,n}$ having $p$-integrable generalized $\underline{\operatorname{Curl}}\,$ and generalized vanishing tangential trace $P\,...

Full description

Bibliographic Details
Main Authors: Lewintan, Peter, Neff, Patrizio
Format: Article
Language:English
Published: Académie des sciences 2021-09-01
Series:Comptes Rendus. Mathématique
Online Access:https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.216/
_version_ 1797651563802525696
author Lewintan, Peter
Neff, Patrizio
author_facet Lewintan, Peter
Neff, Patrizio
author_sort Lewintan, Peter
collection DOAJ
description For $n\ge 2$ and $1 we prove an $L^p$-version of the generalized Korn-type inequality for incompatible, $p$-integrable tensor fields $P:\Omega \rightarrow \mathbb{R}^{n\,\times \,n}$ having $p$-integrable generalized $\underline{\operatorname{Curl}}\,$ and generalized vanishing tangential trace $P\,\tau _l=0$ on $\partial \Omega $, denoting by $\lbrace \tau _l\rbrace _{l=1,\,\ldots ,\,n-1}$ a moving tangent frame on $\partial \Omega $, more precisely we have: \[ \left\Vert P \right\Vert _{L^p\left(\Omega ,\,\mathbb{R}^{n\,\times \,n}\right)}\le c\,\left(\left\Vert \operatorname{sym}P \right\Vert _{L^p\left(\Omega ,\,\mathbb{R}^{n \times n}\right)}+ \left\Vert \underline{\operatorname{Curl}}\,P \right\Vert _{L^p\left(\Omega ,\,\left(\mathfrak{so}(n)\right)^n\right)}\right), \] where the generalized $\underline{\operatorname{Curl}}\,$ is given by $(\underline{\operatorname{Curl}}\,P)_{ijk} :=\partial _i P_{kj}-\partial _j P_{ki}$ and $c=c(n,p,\Omega )>0$
first_indexed 2024-03-11T16:16:35Z
format Article
id doaj.art-c031b6369e4a46e1b6d5b91a86e92fc0
institution Directory Open Access Journal
issn 1778-3569
language English
last_indexed 2024-03-11T16:16:35Z
publishDate 2021-09-01
publisher Académie des sciences
record_format Article
series Comptes Rendus. Mathématique
spelling doaj.art-c031b6369e4a46e1b6d5b91a86e92fc02023-10-24T14:19:23ZengAcadémie des sciencesComptes Rendus. Mathématique1778-35692021-09-01359674975510.5802/crmath.21610.5802/crmath.216$L^p$-versions of generalized Korn inequalities for incompatible tensor fields in arbitrary dimensions with $p$-integrable exterior derivativeLewintan, Peter0https://orcid.org/0000-0002-7188-4806Neff, Patrizio1https://orcid.org/0000-0002-1615-8879Faculty of Mathematics, University of Duisburg-Essen, Thea-Leymann-Str. 9, 45127 Essen, GermanyFaculty of Mathematics, University of Duisburg-Essen, Thea-Leymann-Str. 9, 45127 Essen, GermanyFor $n\ge 2$ and $1 we prove an $L^p$-version of the generalized Korn-type inequality for incompatible, $p$-integrable tensor fields $P:\Omega \rightarrow \mathbb{R}^{n\,\times \,n}$ having $p$-integrable generalized $\underline{\operatorname{Curl}}\,$ and generalized vanishing tangential trace $P\,\tau _l=0$ on $\partial \Omega $, denoting by $\lbrace \tau _l\rbrace _{l=1,\,\ldots ,\,n-1}$ a moving tangent frame on $\partial \Omega $, more precisely we have: \[ \left\Vert P \right\Vert _{L^p\left(\Omega ,\,\mathbb{R}^{n\,\times \,n}\right)}\le c\,\left(\left\Vert \operatorname{sym}P \right\Vert _{L^p\left(\Omega ,\,\mathbb{R}^{n \times n}\right)}+ \left\Vert \underline{\operatorname{Curl}}\,P \right\Vert _{L^p\left(\Omega ,\,\left(\mathfrak{so}(n)\right)^n\right)}\right), \] where the generalized $\underline{\operatorname{Curl}}\,$ is given by $(\underline{\operatorname{Curl}}\,P)_{ijk} :=\partial _i P_{kj}-\partial _j P_{ki}$ and $c=c(n,p,\Omega )>0$https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.216/
spellingShingle Lewintan, Peter
Neff, Patrizio
$L^p$-versions of generalized Korn inequalities for incompatible tensor fields in arbitrary dimensions with $p$-integrable exterior derivative
Comptes Rendus. Mathématique
title $L^p$-versions of generalized Korn inequalities for incompatible tensor fields in arbitrary dimensions with $p$-integrable exterior derivative
title_full $L^p$-versions of generalized Korn inequalities for incompatible tensor fields in arbitrary dimensions with $p$-integrable exterior derivative
title_fullStr $L^p$-versions of generalized Korn inequalities for incompatible tensor fields in arbitrary dimensions with $p$-integrable exterior derivative
title_full_unstemmed $L^p$-versions of generalized Korn inequalities for incompatible tensor fields in arbitrary dimensions with $p$-integrable exterior derivative
title_short $L^p$-versions of generalized Korn inequalities for incompatible tensor fields in arbitrary dimensions with $p$-integrable exterior derivative
title_sort l p versions of generalized korn inequalities for incompatible tensor fields in arbitrary dimensions with p integrable exterior derivative
url https://comptes-rendus.academie-sciences.fr/mathematique/articles/10.5802/crmath.216/
work_keys_str_mv AT lewintanpeter lpversionsofgeneralizedkorninequalitiesforincompatibletensorfieldsinarbitrarydimensionswithpintegrableexteriorderivative
AT neffpatrizio lpversionsofgeneralizedkorninequalitiesforincompatibletensorfieldsinarbitrarydimensionswithpintegrableexteriorderivative