A dual approach to structure constants for K-theory of Grassmannians

The problem of computing products of Schubert classes in the cohomology ring can be formulated as theproblem of expanding skew Schur polynomial into the basis of ordinary Schur polynomials. We reformulate theproblem of computing the structure constants of the Grothendieck ring of a Grassmannian va...

Full description

Bibliographic Details
Main Authors: Huilan Li, Jennifer Morse, Pat Shields
Format: Article
Language:English
Published: Discrete Mathematics & Theoretical Computer Science 2020-04-01
Series:Discrete Mathematics & Theoretical Computer Science
Subjects:
Online Access:https://dmtcs.episciences.org/6361/pdf
Description
Summary:The problem of computing products of Schubert classes in the cohomology ring can be formulated as theproblem of expanding skew Schur polynomial into the basis of ordinary Schur polynomials. We reformulate theproblem of computing the structure constants of the Grothendieck ring of a Grassmannian variety with respect to itsbasis of Schubert structure sheaves in a similar way; we address the problem of expanding the generating functions forskew reverse-plane partitions into the basis of polynomials which are Hall-dual to stable Grothendieck polynomials. From this point of view, we produce a chain of bijections leading to Buch’s K-theoretic Littlewood-Richardson rule.
ISSN:1365-8050