Amoebae-resisting Bacteria Isolated from Human Nasal Swabs by Amoebal Coculture
Amoebae feed on bacteria, and few bacteria can resist their microbicidal ability. Amoebal coculture could therefore be used to selectively grow these amoebae-resisting bacteria (ARB), which may be human pathogens. To isolate new ARB, we performed amoebal coculture from 444 nasal samples. We recovere...
Main Authors: | , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Centers for Disease Control and Prevention
2004-03-01
|
Series: | Emerging Infectious Diseases |
Subjects: | |
Online Access: | https://wwwnc.cdc.gov/eid/article/10/3/02-0792_article |
Summary: | Amoebae feed on bacteria, and few bacteria can resist their microbicidal ability. Amoebal coculture could therefore be used to selectively grow these amoebae-resisting bacteria (ARB), which may be human pathogens. To isolate new ARB, we performed amoebal coculture from 444 nasal samples. We recovered 7 (1.6%) ARB from 444 nasal swabs, including 4 new species provisionally named Candidatus Roseomonas massiliae, C. Rhizobium massiliae, C. Chryseobacterium massiliae, and C. Amoebinatus massiliae. The remaining isolates were closely related to Methylobacterium extorquens, Bosea vestrii, and Achromobacter xylosoxidans. Thus, amoebal coculture allows the recovery of new bacterial species from heavily contaminated samples and might be a valuable approach for the recovery of as-yet unrecognized emerging pathogens from clinical specimens. |
---|---|
ISSN: | 1080-6040 1080-6059 |