On the Total Outer <i>k</i>-Independent Domination Number of Graphs

A set of vertices of a graph <i>G</i> is a total dominating set if every vertex of <i>G</i> is adjacent to at least one vertex in such a set. We say that a total dominating set <i>D</i> is a total outer <i>k</i>-independent dominating set of <i>G...

Full description

Bibliographic Details
Main Authors: Abel Cabrera-Martínez, Juan Carlos Hernández-Gómez, Ernesto Parra-Inza, José María Sigarreta Almira
Format: Article
Language:English
Published: MDPI AG 2020-02-01
Series:Mathematics
Subjects:
Online Access:https://www.mdpi.com/2227-7390/8/2/194
_version_ 1818160056969986048
author Abel Cabrera-Martínez
Juan Carlos Hernández-Gómez
Ernesto Parra-Inza
José María Sigarreta Almira
author_facet Abel Cabrera-Martínez
Juan Carlos Hernández-Gómez
Ernesto Parra-Inza
José María Sigarreta Almira
author_sort Abel Cabrera-Martínez
collection DOAJ
description A set of vertices of a graph <i>G</i> is a total dominating set if every vertex of <i>G</i> is adjacent to at least one vertex in such a set. We say that a total dominating set <i>D</i> is a total outer <i>k</i>-independent dominating set of <i>G</i> if the maximum degree of the subgraph induced by the vertices that are not in <i>D</i> is less or equal to <inline-formula> <math display="inline"> <semantics> <mrow> <mi>k</mi> <mo>&#8722;</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>. The minimum cardinality among all total outer <i>k</i>-independent dominating sets is the total outer <i>k</i>-independent domination number of <i>G</i>. In this article, we introduce this parameter and begin with the study of its combinatorial and computational properties. For instance, we give several closed relationships between this novel parameter and other ones related to domination and independence in graphs. In addition, we give several Nordhaus&#8722;Gaddum type results. Finally, we prove that computing the total outer <i>k</i>-independent domination number of a graph <i>G</i> is an NP-hard problem.
first_indexed 2024-12-11T15:55:49Z
format Article
id doaj.art-c040516f69a34f8aaaa39cd988bee4dd
institution Directory Open Access Journal
issn 2227-7390
language English
last_indexed 2024-12-11T15:55:49Z
publishDate 2020-02-01
publisher MDPI AG
record_format Article
series Mathematics
spelling doaj.art-c040516f69a34f8aaaa39cd988bee4dd2022-12-22T00:59:26ZengMDPI AGMathematics2227-73902020-02-018219410.3390/math8020194math8020194On the Total Outer <i>k</i>-Independent Domination Number of GraphsAbel Cabrera-Martínez0Juan Carlos Hernández-Gómez1Ernesto Parra-Inza2José María Sigarreta Almira3Departament d’Enginyeria Informàtica i Matemàtiques, Universitat Rovira i Virgili, Av. Països Catalans 26, 43007 Tarragona, SpainFacultad de Matemáticas, Universidad Autónoma de Guerrero, Carlos E. Adame 5, Col. La Garita 39650, Acapulco, MexicoFacultad de Matemáticas, Universidad Autónoma de Guerrero, Carlos E. Adame 5, Col. La Garita 39650, Acapulco, MexicoFacultad de Matemáticas, Universidad Autónoma de Guerrero, Carlos E. Adame 5, Col. La Garita 39650, Acapulco, MexicoA set of vertices of a graph <i>G</i> is a total dominating set if every vertex of <i>G</i> is adjacent to at least one vertex in such a set. We say that a total dominating set <i>D</i> is a total outer <i>k</i>-independent dominating set of <i>G</i> if the maximum degree of the subgraph induced by the vertices that are not in <i>D</i> is less or equal to <inline-formula> <math display="inline"> <semantics> <mrow> <mi>k</mi> <mo>&#8722;</mo> <mn>1</mn> </mrow> </semantics> </math> </inline-formula>. The minimum cardinality among all total outer <i>k</i>-independent dominating sets is the total outer <i>k</i>-independent domination number of <i>G</i>. In this article, we introduce this parameter and begin with the study of its combinatorial and computational properties. For instance, we give several closed relationships between this novel parameter and other ones related to domination and independence in graphs. In addition, we give several Nordhaus&#8722;Gaddum type results. Finally, we prove that computing the total outer <i>k</i>-independent domination number of a graph <i>G</i> is an NP-hard problem.https://www.mdpi.com/2227-7390/8/2/194total outer k-independent dominationtotal dominationk-independence
spellingShingle Abel Cabrera-Martínez
Juan Carlos Hernández-Gómez
Ernesto Parra-Inza
José María Sigarreta Almira
On the Total Outer <i>k</i>-Independent Domination Number of Graphs
Mathematics
total outer k-independent domination
total domination
k-independence
title On the Total Outer <i>k</i>-Independent Domination Number of Graphs
title_full On the Total Outer <i>k</i>-Independent Domination Number of Graphs
title_fullStr On the Total Outer <i>k</i>-Independent Domination Number of Graphs
title_full_unstemmed On the Total Outer <i>k</i>-Independent Domination Number of Graphs
title_short On the Total Outer <i>k</i>-Independent Domination Number of Graphs
title_sort on the total outer i k i independent domination number of graphs
topic total outer k-independent domination
total domination
k-independence
url https://www.mdpi.com/2227-7390/8/2/194
work_keys_str_mv AT abelcabreramartinez onthetotalouterikiindependentdominationnumberofgraphs
AT juancarloshernandezgomez onthetotalouterikiindependentdominationnumberofgraphs
AT ernestoparrainza onthetotalouterikiindependentdominationnumberofgraphs
AT josemariasigarretaalmira onthetotalouterikiindependentdominationnumberofgraphs