Summary: | The reactive molecular dynamics method was employed to examine the thermal decomposition process of aluminized hydride (AlH<sub>3</sub>) containing explosive nanoparticles with a core–shell structure under high temperature. The core was composed of the explosives RDX, HMX, and CL-20, while the shell was composed of AlH<sub>3</sub>. It was demonstrated that the CL-20@AlH<sub>3</sub> NPs decomposed at a faster rate than the other NPs, and elevated temperatures could accelerate the initial decomposition of the explosive molecules. The incorporation of aluminized hydride shells did not change the initial decomposition mechanism of the three explosives. The yields of the main products (NO, NO<sub>2</sub>, N<sub>2</sub>, H<sub>2</sub>O, H<sub>2</sub>, and CO<sub>2</sub>) were investigated. There was a large number of solid aluminized clusters produced during the decomposition, mainly Al<sub>m</sub>O<sub>n</sub> and Al<sub>m</sub>C<sub>n</sub> clusters, together with Al<sub>m</sub>N<sub>n</sub> clusters dispersed in the Al<sub>m</sub>O<sub>n</sub> clusters.
|