Functional assessment of bidirectional cortical and peripheral neural control on heartbeat dynamics: A brain-heart study on thermal stress

The study of functional Brain-Heart Interplay (BHI) from non-invasive recordings has gained much interest in recent years. Previous endeavors aimed at understanding how the two dynamical systems exchange information, providing novel holistic biomarkers and important insights on essential cognitive a...

Full description

Bibliographic Details
Main Authors: Diego Candia-Rivera, Vincenzo Catrambone, Riccardo Barbieri, Gaetano Valenza
Format: Article
Language:English
Published: Elsevier 2022-05-01
Series:NeuroImage
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1053811922001525
Description
Summary:The study of functional Brain-Heart Interplay (BHI) from non-invasive recordings has gained much interest in recent years. Previous endeavors aimed at understanding how the two dynamical systems exchange information, providing novel holistic biomarkers and important insights on essential cognitive aspects and neural system functioning. However, the interplay between cardiac sympathovagal and cortical oscillations still has much room for further investigation. In this study, we introduce a new computational framework for a functional BHI assessment, namely the Sympatho-Vagal Synthetic Data Generation Model, combining cortical (electroencephalography, EEG) and peripheral (cardiac sympathovagal) neural dynamics. The causal, bidirectional neural control on heartbeat dynamics was quantified on data gathered from 26 human volunteers undergoing a cold-pressor test. Results show that thermal stress induces heart-to-brain functional interplay sustained by EEG oscillations in the delta and gamma bands, primarily originating from sympathetic activity, whereas brain-to-heart interplay originates over central brain regions through sympathovagal control. The proposed methodology provides a viable computational tool for the functional assessment of the causal interplay between cortical and cardiac neural control.
ISSN:1095-9572