Mapas de taxas epidemiológicas: uma abordagem Bayesiana Maps of epidemiological rates: a Bayesian approach
Neste artigo, apresentamos métodos estatísticos desenvolvidos recentemente para a análise de mapas de taxas de morbidade quando as unidades geográficas possuem pequenas populações de risco. Eles adotam a abordagem Bayesiana e utilizam métodos computacionais intensivos para estimação do risco de cada...
Main Authors: | , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Escola Nacional de Saúde Pública, Fundação Oswaldo Cruz
1998-10-01
|
Series: | Cadernos de Saúde Pública |
Subjects: | |
Online Access: | http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0102-311X1998000400013 |
Summary: | Neste artigo, apresentamos métodos estatísticos desenvolvidos recentemente para a análise de mapas de taxas de morbidade quando as unidades geográficas possuem pequenas populações de risco. Eles adotam a abordagem Bayesiana e utilizam métodos computacionais intensivos para estimação do risco de cada área. O objetivo dos métodos é separar a variabilidade das taxas devida às diferenças entre as regiões do risco subjacente daquela devida à pura flutuação aleatória. As estimativas de risco possuem um erro quadrático médio total menor que as estimativas usuais. Aplicamos esses novos métodos para estimar o risco de mortalidade infantil nos municípios de Minas Gerais em 1994.<br>This article presents statistical methods recently developed for the analysis of maps of disease rates when the geographic units have small populations at risk. They adopt the Bayesian approach and use intensive computational methods for estimating risk in each area. The objective of the methods is to separate the variability of rates due to differences between regions from the background risk due to pure random fluctuation. Risk estimates have a total mean quadratic error smaller than usual estimates. We apply these new methods to estimate infant mortality risk in the municipalities of the State of Minas Gerais in 1994. |
---|---|
ISSN: | 0102-311X 1678-4464 |