The integer part of nonlinear forms with prime variables

In this paper, we discuss problems that integer part of nonlinear forms with prime variables represent primes infinitely. We prove that under suitable conditions there exist infinitely many primes $ p_j, p $ such that $ [\lambda_1p_1^2+\lambda_2p_2^2+\lambda_3p_3^k] = p $ and $ [\lambda_1p_1^3+\cdot...

Full description

Bibliographic Details
Main Authors: Weiping Li, Guohua Chen
Format: Article
Language:English
Published: AIMS Press 2022-01-01
Series:AIMS Mathematics
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/math.2022067?viewType=HTML
Description
Summary:In this paper, we discuss problems that integer part of nonlinear forms with prime variables represent primes infinitely. We prove that under suitable conditions there exist infinitely many primes $ p_j, p $ such that $ [\lambda_1p_1^2+\lambda_2p_2^2+\lambda_3p_3^k] = p $ and $ [\lambda_1p_1^3+\cdots+\lambda_4p_4^3+\lambda_5p_5^k] = p $ with $ k\geq 2 $ and $ k\geq 3 $ respectively, which improve the author's earlier results.
ISSN:2473-6988