Summary: | In the present paper we give a fractional generalization of the Lauwerier formulation of the boundary value problem of the temperature field in oil strata. The Caputo fractional derivative operator and the Laplace transform are the important tools for solving the proposed problem. By using Efros’ theorem which is a modified form of convolution theorem for Laplace transform, the solution is obtained in an integral form with integrand expressed as convolution of auxiliary functions of Wright’s type<br>Este trabajo se trata de una generalización fraccional del problema Lauwerier para estudiar las temperaturas en los pozos petroleros. Se utiliza el operador fraccional de Caputo y la transformada de Laplace para obtener la solución del problema del contorno. El teorema de Efros, el cual es una generalización del teorema de convolución, se utiliza para obtener los resultados analíticos en términos de funciones tipo Wright
|