Maximum principles for hypersurfaces with vanishing curvature functions in an arbitrary Riemannian manifold

In this paper we generalize and extend to any Riemannian manifold maximum principles for Euclidean hypersurfaces with vanishing curvature functions obtained by Hounie-Leite.<br>Neste trabalho nós generalizamos e estendemos para uma variedade Riemanniana arbitrária princípios do máximo para hip...

Full description

Bibliographic Details
Main Authors: FRANCISCO X. FONTENELE, SÉRGIO L. SILVA
Format: Article
Language:English
Published: Academia Brasileira de Ciências 2002-06-01
Series:Anais da Academia Brasileira de Ciências
Subjects:
Online Access:http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652002000200002
_version_ 1818306938617724928
author FRANCISCO X. FONTENELE
SÉRGIO L. SILVA
author_facet FRANCISCO X. FONTENELE
SÉRGIO L. SILVA
author_sort FRANCISCO X. FONTENELE
collection DOAJ
description In this paper we generalize and extend to any Riemannian manifold maximum principles for Euclidean hypersurfaces with vanishing curvature functions obtained by Hounie-Leite.<br>Neste trabalho nós generalizamos e estendemos para uma variedade Riemanniana arbitrária princípios do máximo para hipersuperfícies com r-ésima curvatura média zero no espaço Euclidiano, obtidos por Hounie-Leite.
first_indexed 2024-12-13T06:50:26Z
format Article
id doaj.art-c05076f2f93147e69b671c6720e94df5
institution Directory Open Access Journal
issn 0001-3765
1678-2690
language English
last_indexed 2024-12-13T06:50:26Z
publishDate 2002-06-01
publisher Academia Brasileira de Ciências
record_format Article
series Anais da Academia Brasileira de Ciências
spelling doaj.art-c05076f2f93147e69b671c6720e94df52022-12-21T23:56:10ZengAcademia Brasileira de CiênciasAnais da Academia Brasileira de Ciências0001-37651678-26902002-06-0174219920510.1590/S0001-37652002000200002Maximum principles for hypersurfaces with vanishing curvature functions in an arbitrary Riemannian manifoldFRANCISCO X. FONTENELESÉRGIO L. SILVAIn this paper we generalize and extend to any Riemannian manifold maximum principles for Euclidean hypersurfaces with vanishing curvature functions obtained by Hounie-Leite.<br>Neste trabalho nós generalizamos e estendemos para uma variedade Riemanniana arbitrária princípios do máximo para hipersuperfícies com r-ésima curvatura média zero no espaço Euclidiano, obtidos por Hounie-Leite.http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652002000200002princípio do máximohipersuperfícier-ésima curvatura médiamaximum principlehypersurfacerth mean curvature
spellingShingle FRANCISCO X. FONTENELE
SÉRGIO L. SILVA
Maximum principles for hypersurfaces with vanishing curvature functions in an arbitrary Riemannian manifold
Anais da Academia Brasileira de Ciências
princípio do máximo
hipersuperfície
r-ésima curvatura média
maximum principle
hypersurface
rth mean curvature
title Maximum principles for hypersurfaces with vanishing curvature functions in an arbitrary Riemannian manifold
title_full Maximum principles for hypersurfaces with vanishing curvature functions in an arbitrary Riemannian manifold
title_fullStr Maximum principles for hypersurfaces with vanishing curvature functions in an arbitrary Riemannian manifold
title_full_unstemmed Maximum principles for hypersurfaces with vanishing curvature functions in an arbitrary Riemannian manifold
title_short Maximum principles for hypersurfaces with vanishing curvature functions in an arbitrary Riemannian manifold
title_sort maximum principles for hypersurfaces with vanishing curvature functions in an arbitrary riemannian manifold
topic princípio do máximo
hipersuperfície
r-ésima curvatura média
maximum principle
hypersurface
rth mean curvature
url http://www.scielo.br/scielo.php?script=sci_arttext&pid=S0001-37652002000200002
work_keys_str_mv AT franciscoxfontenele maximumprinciplesforhypersurfaceswithvanishingcurvaturefunctionsinanarbitraryriemannianmanifold
AT sergiolsilva maximumprinciplesforhypersurfaceswithvanishingcurvaturefunctionsinanarbitraryriemannianmanifold