Magnetocrystalline anisotropy energy and Gilbert damping of two-dimensional half-metallic RhX2 (X = I, Br, Cl) ferromagnets: Density functional theory study

This work studies the monolayer rhodium dihalides family, RhX2 (where X = I, Br, Cl), using density functional theory. We first calculate the spin-polarized electronic band structure, revealing a wide intrinsic half-metallic gap (>1.1 eV) in the down spin bands of RhX2 monolayers. We then calcula...

Full description

Bibliographic Details
Main Authors: Sunayana Bhardwaj, Bijoy K. Kuanr, Ram Krishna Ghosh
Format: Article
Language:English
Published: AIP Publishing LLC 2023-02-01
Series:AIP Advances
Online Access:http://dx.doi.org/10.1063/9.0000542
_version_ 1811154923512922112
author Sunayana Bhardwaj
Bijoy K. Kuanr
Ram Krishna Ghosh
author_facet Sunayana Bhardwaj
Bijoy K. Kuanr
Ram Krishna Ghosh
author_sort Sunayana Bhardwaj
collection DOAJ
description This work studies the monolayer rhodium dihalides family, RhX2 (where X = I, Br, Cl), using density functional theory. We first calculate the spin-polarized electronic band structure, revealing a wide intrinsic half-metallic gap (>1.1 eV) in the down spin bands of RhX2 monolayers. We then calculate the magnetocrystalline anisotropy energy (EMCA) and Gilbert damping (α), which originate from the spin–orbit coupling (SOC) phenomenon. We use the force theorem for EMCA calculation that results in substantial in-plane anisotropy in RhI2 (−2.31 meV/unit cell) and RhBr2 (−0.52 meV/unit cell), whereas small perpendicular anisotropy in RhCl2 (0.04 meV/unit cell) monolayers. To calculate α, we employ the Kambersky’s torque–torque correlation model and it comes out relatively low (i.e., 0.0212, 0.0079, and 0.0040 for RhI2, RhBr2, and RhCl2, respectively). The Curie temperature of these crystals is calculated using the Ising model and spin-wave theory. This work highlights the importance of 2D RhX2 half-metallic ferromagnets in the fabrication of future nanoscale spintronic devices.
first_indexed 2024-04-10T04:25:24Z
format Article
id doaj.art-c056ac34eeb34d788c6c26906bf8a0b7
institution Directory Open Access Journal
issn 2158-3226
language English
last_indexed 2024-04-10T04:25:24Z
publishDate 2023-02-01
publisher AIP Publishing LLC
record_format Article
series AIP Advances
spelling doaj.art-c056ac34eeb34d788c6c26906bf8a0b72023-03-10T17:26:19ZengAIP Publishing LLCAIP Advances2158-32262023-02-01132025002025002-710.1063/9.0000542Magnetocrystalline anisotropy energy and Gilbert damping of two-dimensional half-metallic RhX2 (X = I, Br, Cl) ferromagnets: Density functional theory studySunayana Bhardwaj0Bijoy K. Kuanr1Ram Krishna Ghosh2Special Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, IndiaSpecial Centre for Nanoscience, Jawaharlal Nehru University, New Delhi 110067, IndiaDepartment of Electronics & Communications Engineering, Indraprastha Institute of Information Technology Delhi, New Delhi 110020, IndiaThis work studies the monolayer rhodium dihalides family, RhX2 (where X = I, Br, Cl), using density functional theory. We first calculate the spin-polarized electronic band structure, revealing a wide intrinsic half-metallic gap (>1.1 eV) in the down spin bands of RhX2 monolayers. We then calculate the magnetocrystalline anisotropy energy (EMCA) and Gilbert damping (α), which originate from the spin–orbit coupling (SOC) phenomenon. We use the force theorem for EMCA calculation that results in substantial in-plane anisotropy in RhI2 (−2.31 meV/unit cell) and RhBr2 (−0.52 meV/unit cell), whereas small perpendicular anisotropy in RhCl2 (0.04 meV/unit cell) monolayers. To calculate α, we employ the Kambersky’s torque–torque correlation model and it comes out relatively low (i.e., 0.0212, 0.0079, and 0.0040 for RhI2, RhBr2, and RhCl2, respectively). The Curie temperature of these crystals is calculated using the Ising model and spin-wave theory. This work highlights the importance of 2D RhX2 half-metallic ferromagnets in the fabrication of future nanoscale spintronic devices.http://dx.doi.org/10.1063/9.0000542
spellingShingle Sunayana Bhardwaj
Bijoy K. Kuanr
Ram Krishna Ghosh
Magnetocrystalline anisotropy energy and Gilbert damping of two-dimensional half-metallic RhX2 (X = I, Br, Cl) ferromagnets: Density functional theory study
AIP Advances
title Magnetocrystalline anisotropy energy and Gilbert damping of two-dimensional half-metallic RhX2 (X = I, Br, Cl) ferromagnets: Density functional theory study
title_full Magnetocrystalline anisotropy energy and Gilbert damping of two-dimensional half-metallic RhX2 (X = I, Br, Cl) ferromagnets: Density functional theory study
title_fullStr Magnetocrystalline anisotropy energy and Gilbert damping of two-dimensional half-metallic RhX2 (X = I, Br, Cl) ferromagnets: Density functional theory study
title_full_unstemmed Magnetocrystalline anisotropy energy and Gilbert damping of two-dimensional half-metallic RhX2 (X = I, Br, Cl) ferromagnets: Density functional theory study
title_short Magnetocrystalline anisotropy energy and Gilbert damping of two-dimensional half-metallic RhX2 (X = I, Br, Cl) ferromagnets: Density functional theory study
title_sort magnetocrystalline anisotropy energy and gilbert damping of two dimensional half metallic rhx2 x i br cl ferromagnets density functional theory study
url http://dx.doi.org/10.1063/9.0000542
work_keys_str_mv AT sunayanabhardwaj magnetocrystallineanisotropyenergyandgilbertdampingoftwodimensionalhalfmetallicrhx2xibrclferromagnetsdensityfunctionaltheorystudy
AT bijoykkuanr magnetocrystallineanisotropyenergyandgilbertdampingoftwodimensionalhalfmetallicrhx2xibrclferromagnetsdensityfunctionaltheorystudy
AT ramkrishnaghosh magnetocrystallineanisotropyenergyandgilbertdampingoftwodimensionalhalfmetallicrhx2xibrclferromagnetsdensityfunctionaltheorystudy