The Morphology and Solute Segregation of Dendrite Growth in Ti-4.5% Al Alloy: A Phase-Field Study

Ti-Al alloys have excellent high-temperature performance and are often used in the manufacture of high-pressure compressors and low-pressure turbine blades for military aircraft engines. However, solute segregation is easy to occur in the solidification process of Ti-Al alloys, which will affect the...

Full description

Bibliographic Details
Main Authors: Yongmei Zhang, Xiaona Wang, Shuai Yang, Weipeng Chen, Hua Hou
Format: Article
Language:English
Published: MDPI AG 2021-11-01
Series:Materials
Subjects:
Online Access:https://www.mdpi.com/1996-1944/14/23/7257
Description
Summary:Ti-Al alloys have excellent high-temperature performance and are often used in the manufacture of high-pressure compressors and low-pressure turbine blades for military aircraft engines. However, solute segregation is easy to occur in the solidification process of Ti-Al alloys, which will affect their properties. In this study, we used the quantitative phase-field model developed by Karma to study the equiaxed dendrite growth of Ti-4.5% Al alloy. The effects of supersaturation, undercooling and thermal disturbance on the dendrite morphology and solute segregation were studied. The results showed that the increase of supersaturation and undercooling will promote the growth of secondary dendrite arms and aggravate the solute segregation. When the undercooling is large, the solute in the root of the primary dendrite arms is seriously enriched, and when the supersaturation is large, the time for the dendrite tips to reach a steady-state will be shortened. The thermal disturbance mainly affects the morphology and distribution of the secondary dendrite arms but has almost no effect on the steady-state of the primary dendrite tips. This is helpful to understand the cause of solute segregation in Ti-Al alloy theoretically.
ISSN:1996-1944