An ADMM-qSPICE-Based Sparse DOA Estimation Method for MIMO Radar

In recent years, sparse direction-of-arrival (DOA) estimation for multiple-input multiple-output (MIMO) radar has attracted extensive attention and been extensively studied, especially the method based on the classic least absolute shrinkage and selection operator (LASSO) estimator. The alternating-...

Full description

Bibliographic Details
Main Authors: Yongwei Zhang, Yongchao Zhang, Jiawei Luo, Yulin Huang, Jianan Yan, Yin Zhang, Jianyu Yang
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:Remote Sensing
Subjects:
Online Access:https://www.mdpi.com/2072-4292/15/2/446
Description
Summary:In recent years, sparse direction-of-arrival (DOA) estimation for multiple-input multiple-output (MIMO) radar has attracted extensive attention and been extensively studied, especially the method based on the classic least absolute shrinkage and selection operator (LASSO) estimator. The alternating-direction method of multipliers (ADMM) is an effective method for solving this problem at the cost of introducing an additional user parameter. To avoid introducing an additional user parameter, this paper adopts an equivalent transformation in the form of the generalized SParse Iterative Covariance-based Estimation (qSPICE) cost function to obtain a mean squared minimized form of the cost function. Then, the problem is transformed into a sparse optimization problem in the form of a weighted LASSO. Next, this unconstrained optimization problem is decomposed into three subproblems, which are solved separately to reduce the dimension of each problem and thus reduce the overall computational complexity based on ADMM. Simulation results and measured data indicate that the proposed method significantly outperforms the traditional super-resolution DOA estimation method and ADMM-LASSO method and slightly outperforms qSPICE in terms of resolution and sidelobe suppression capability. In addition, the proposed method has a much lower computational complexity and substantially fewer iterations than qSPICE.
ISSN:2072-4292