Molecular Structure, Spectroscopic and DFT Computational Studies of Arylidene-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione

Reaction of barbituric acid derivatives and di-substituted benzaldehyde in water afforded arylidene-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione derivatives (1 and 2). The one step reaction proceeded efficiently, smoothly, and in excellent yield. The arylidene compounds were characterized by spectr...

Full description

Bibliographic Details
Main Authors: Assem Barakat, Saied M. Soliman, Hazem A. Ghabbour, M. Ali, Abdullah Mohammed Al-Majid, Mohammad Shahidul Islam, Ayman A. Ghfar
Format: Article
Language:English
Published: MDPI AG 2016-09-01
Series:Crystals
Subjects:
Online Access:http://www.mdpi.com/2073-4352/6/9/110
Description
Summary:Reaction of barbituric acid derivatives and di-substituted benzaldehyde in water afforded arylidene-1,3-dimethylpyrimidine-2,4,6(1H,3H,5H)-trione derivatives (1 and 2). The one step reaction proceeded efficiently, smoothly, and in excellent yield. The arylidene compounds were characterized by spectrophotometric tools plus X-ray single crystal diffraction technique. Quantum chemical calculations were performed using the DFT/B3LYP method to optimize the structure of the two isomers (1 and 2) in the gas phase. The optimized structures were found to agree well with the experimental X-ray structure data. The highest occupied (HOMO) and lowest unoccupied (LUMO) frontier molecular orbitals analyses were performed and the atomic charges were calculated using natural populationanalysis.
ISSN:2073-4352