The Fuzzy Natural Transformations, the Algebra P(ω)/fin and Generalized Encoding Theory

A category theory constitutes a convenient conceptual apparatus to organize the worlds of mathematical entities. The concept of fuzzy natural transformation as an abstract mapping on functors is one of the essential concepts of this theory. If we admit a piece of non-commutativity in its definition...

Full description

Bibliographic Details
Main Author: Krystian Jobczyk
Format: Article
Language:English
Published: IEEE 2022-01-01
Series:IEEE Access
Subjects:
Online Access:https://ieeexplore.ieee.org/document/9695485/
_version_ 1811342201693667328
author Krystian Jobczyk
author_facet Krystian Jobczyk
author_sort Krystian Jobczyk
collection DOAJ
description A category theory constitutes a convenient conceptual apparatus to organize the worlds of mathematical entities. The concept of fuzzy natural transformation as an abstract mapping on functors is one of the essential concepts of this theory. If we admit a piece of non-commutativity in its definition diagrams, then the &#x2018;upward&#x2019; and the &#x2018;downward&#x2019; diagram parts generate different result sets. In this way, we can introduce the concept of fuzzy natural transformation. We deal with the multi-fuzzy natural transformation if such a transformation is based on a multi-diagram. This paper aims to describe the multi-fuzzy natural transformation situation when the symmetric difference of the result is finite. It allows us to organize the whole spectrum of the result sets in a unique quotient algebra <inline-formula> <tex-math notation="LaTeX">$\mathcal {P}^{comp}(\omega)/\mathrm {fin}$ </tex-math></inline-formula>. Different algebraic properties of this structure will be explored, and a piece of classical encoding theory will be reconstructed in the environment determined by this algebra. In particular, the concepts of the <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-multi similarity, the abstract <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-multi similarity, the <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-similarity balls, and the abstract <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-similarity balls are introduced as some generalization of the idea of Hamming&#x2019;s distances and Hamming&#x2019;s balls. Finally, it is shown how to automate some verification processes in this context using an R-based programming environment.
first_indexed 2024-04-13T19:07:21Z
format Article
id doaj.art-c061f6240d6c45cc9028944b31a47a61
institution Directory Open Access Journal
issn 2169-3536
language English
last_indexed 2024-04-13T19:07:21Z
publishDate 2022-01-01
publisher IEEE
record_format Article
series IEEE Access
spelling doaj.art-c061f6240d6c45cc9028944b31a47a612022-12-22T02:33:57ZengIEEEIEEE Access2169-35362022-01-0110151351515010.1109/ACCESS.2022.31471659695485The Fuzzy Natural Transformations, the Algebra P(&#x03C9;)/fin and Generalized Encoding TheoryKrystian Jobczyk0https://orcid.org/0000-0001-6194-2737Department of Applied Computer Science, AGH University of Science and Technology, Krak&#x00F3;w, PolandA category theory constitutes a convenient conceptual apparatus to organize the worlds of mathematical entities. The concept of fuzzy natural transformation as an abstract mapping on functors is one of the essential concepts of this theory. If we admit a piece of non-commutativity in its definition diagrams, then the &#x2018;upward&#x2019; and the &#x2018;downward&#x2019; diagram parts generate different result sets. In this way, we can introduce the concept of fuzzy natural transformation. We deal with the multi-fuzzy natural transformation if such a transformation is based on a multi-diagram. This paper aims to describe the multi-fuzzy natural transformation situation when the symmetric difference of the result is finite. It allows us to organize the whole spectrum of the result sets in a unique quotient algebra <inline-formula> <tex-math notation="LaTeX">$\mathcal {P}^{comp}(\omega)/\mathrm {fin}$ </tex-math></inline-formula>. Different algebraic properties of this structure will be explored, and a piece of classical encoding theory will be reconstructed in the environment determined by this algebra. In particular, the concepts of the <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-multi similarity, the abstract <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-multi similarity, the <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-similarity balls, and the abstract <inline-formula> <tex-math notation="LaTeX">$k$ </tex-math></inline-formula>-similarity balls are introduced as some generalization of the idea of Hamming&#x2019;s distances and Hamming&#x2019;s balls. Finally, it is shown how to automate some verification processes in this context using an R-based programming environment.https://ieeexplore.ieee.org/document/9695485/The fuzzy natural transformationP(ω)/fingeneralized encoding theoryHamming distancesR programming
spellingShingle Krystian Jobczyk
The Fuzzy Natural Transformations, the Algebra P(&#x03C9;)/fin and Generalized Encoding Theory
IEEE Access
The fuzzy natural transformation
P(ω)/fin
generalized encoding theory
Hamming distances
R programming
title The Fuzzy Natural Transformations, the Algebra P(&#x03C9;)/fin and Generalized Encoding Theory
title_full The Fuzzy Natural Transformations, the Algebra P(&#x03C9;)/fin and Generalized Encoding Theory
title_fullStr The Fuzzy Natural Transformations, the Algebra P(&#x03C9;)/fin and Generalized Encoding Theory
title_full_unstemmed The Fuzzy Natural Transformations, the Algebra P(&#x03C9;)/fin and Generalized Encoding Theory
title_short The Fuzzy Natural Transformations, the Algebra P(&#x03C9;)/fin and Generalized Encoding Theory
title_sort fuzzy natural transformations the algebra p x03c9 fin and generalized encoding theory
topic The fuzzy natural transformation
P(ω)/fin
generalized encoding theory
Hamming distances
R programming
url https://ieeexplore.ieee.org/document/9695485/
work_keys_str_mv AT krystianjobczyk thefuzzynaturaltransformationsthealgebrapx03c9finandgeneralizedencodingtheory
AT krystianjobczyk fuzzynaturaltransformationsthealgebrapx03c9finandgeneralizedencodingtheory