Joint Design of Space-Time Transmit and Receive Weights for Colocated MIMO Radar

Compared with single-input multiple-output (SIMO) radar, colocated multiple-input multiple-output (MIMO) radar can detect moving targets better by adopting waveform diversity. When the colocated MIMO radar transmits a set of orthogonal waveforms, the transmit weights are usually set equal to one, an...

Full description

Bibliographic Details
Main Authors: Ze Yu, Shusen Wang, Wei Liu, Chunsheng Li
Format: Article
Language:English
Published: MDPI AG 2018-08-01
Series:Sensors
Subjects:
Online Access:http://www.mdpi.com/1424-8220/18/8/2722
Description
Summary:Compared with single-input multiple-output (SIMO) radar, colocated multiple-input multiple-output (MIMO) radar can detect moving targets better by adopting waveform diversity. When the colocated MIMO radar transmits a set of orthogonal waveforms, the transmit weights are usually set equal to one, and the receive weights are adaptively adjusted to suppress clutter based on space-time adaptive processing technology. This paper proposes the joint design of space-time transmit and receive weights for colocated MIMO radar. The approach is based on the premise that all possible moving targets are detected by setting a lower threshold. In each direction where there may be moving targets, the space-time transmit and receive weights can be iteratively updated by using the proposed approach to improve the output signal-to-interference-plus-noise ratio (SINR), which is helpful to improve the precision of target detection. Simulation results demonstrate that the proposed method improves the output SINR by greater than 13 dB.
ISSN:1424-8220