Hydrothermal Steel Slag Valorization—Part II: Hydrogen and Nano-Magnetite Production
The effect of acidic conditions (in a pH range of 3 to 6) and temperature on the kinetics of the hydrothermal oxidation of ferrous iron contained in BOF steel slag has been tested in the 150–350°C range for acid acetic concentrations from 0 to 4 M. Reaction progress was monitored with the amount of...
Main Authors: | , , , , , , , |
---|---|
Format: | Article |
Language: | English |
Published: |
Frontiers Media S.A.
2017-10-01
|
Series: | Frontiers in Earth Science |
Subjects: | |
Online Access: | http://journal.frontiersin.org/article/10.3389/feart.2017.00086/full |
_version_ | 1819209931927060480 |
---|---|
author | Camille Crouzet Camille Crouzet Camille Crouzet Fabrice Brunet Nadir Recham Nadir Recham Anne-Line Auzende Nathaniel Findling Valérie Magnin Jean-Henry Ferrasse Bruno Goffé |
author_facet | Camille Crouzet Camille Crouzet Camille Crouzet Fabrice Brunet Nadir Recham Nadir Recham Anne-Line Auzende Nathaniel Findling Valérie Magnin Jean-Henry Ferrasse Bruno Goffé |
author_sort | Camille Crouzet |
collection | DOAJ |
description | The effect of acidic conditions (in a pH range of 3 to 6) and temperature on the kinetics of the hydrothermal oxidation of ferrous iron contained in BOF steel slag has been tested in the 150–350°C range for acid acetic concentrations from 0 to 4 M. Reaction progress was monitored with the amount of produced H2. Higher temperature and lower pH are found to enhance the hydrothermal oxidation kinetics of the slag. These two parameters are believed to increase iron dissolution rate which has already been identified as the rate limiting step of the hydrothermal oxidation of pure FeO. An activation energy of 28 ± 4 kJ/mole is found for the hydrothermal oxidation of the steel slag which compares very well with that of pure FeO under similar conditions. In the case of the slag run in water at 300°C for 70.5 h, magnetite product has been separated magnetically and characterized. Particles were found to fall in three size ranges: 10–30 nm, 100–300 nm, and 1–10 μm. The smallest fraction (10–30 nm) is comparable to the 10–20 nm size range that is achieved when nanomagnetite are synthesized by co-precipitation methods. Obviously, the production of nanomagnetite enhances the economic interest of the hydrothermal processing of steel slags, which has already proven its capacity to produce high-purity H2. |
first_indexed | 2024-12-23T06:03:08Z |
format | Article |
id | doaj.art-c09ce2279f404d6daf15d040c6609a78 |
institution | Directory Open Access Journal |
issn | 2296-6463 |
language | English |
last_indexed | 2024-12-23T06:03:08Z |
publishDate | 2017-10-01 |
publisher | Frontiers Media S.A. |
record_format | Article |
series | Frontiers in Earth Science |
spelling | doaj.art-c09ce2279f404d6daf15d040c6609a782022-12-21T17:57:37ZengFrontiers Media S.A.Frontiers in Earth Science2296-64632017-10-01510.3389/feart.2017.00086295546Hydrothermal Steel Slag Valorization—Part II: Hydrogen and Nano-Magnetite ProductionCamille Crouzet0Camille Crouzet1Camille Crouzet2Fabrice Brunet3Nadir Recham4Nadir Recham5Anne-Line Auzende6Nathaniel Findling7Valérie Magnin8Jean-Henry Ferrasse9Bruno Goffé10Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, FranceLRCS, CNRS-UMR7314, Univ. Picardie Jules Verne, Amiens, FranceAix Marseille Univ., CNRS, Centrale Marseille, M2P2, Marseille, FranceUniv. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, FranceLRCS, CNRS-UMR7314, Univ. Picardie Jules Verne, Amiens, FranceRS2E, FR CNRS 3459, Univ. Picardie Jules Verne, Amiens, FranceUniv. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, FranceUniv. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, FranceUniv. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, FranceAix Marseille Univ., CNRS, Centrale Marseille, M2P2, Marseille, FranceAix-Marseille Univ., CNRS, IRD, Collège de France, CEREGE, Aix en Provence, FranceThe effect of acidic conditions (in a pH range of 3 to 6) and temperature on the kinetics of the hydrothermal oxidation of ferrous iron contained in BOF steel slag has been tested in the 150–350°C range for acid acetic concentrations from 0 to 4 M. Reaction progress was monitored with the amount of produced H2. Higher temperature and lower pH are found to enhance the hydrothermal oxidation kinetics of the slag. These two parameters are believed to increase iron dissolution rate which has already been identified as the rate limiting step of the hydrothermal oxidation of pure FeO. An activation energy of 28 ± 4 kJ/mole is found for the hydrothermal oxidation of the steel slag which compares very well with that of pure FeO under similar conditions. In the case of the slag run in water at 300°C for 70.5 h, magnetite product has been separated magnetically and characterized. Particles were found to fall in three size ranges: 10–30 nm, 100–300 nm, and 1–10 μm. The smallest fraction (10–30 nm) is comparable to the 10–20 nm size range that is achieved when nanomagnetite are synthesized by co-precipitation methods. Obviously, the production of nanomagnetite enhances the economic interest of the hydrothermal processing of steel slags, which has already proven its capacity to produce high-purity H2.http://journal.frontiersin.org/article/10.3389/feart.2017.00086/fullmagnetitenanoparticlesBOF steel slaghydrothermal oxidationhydrogen production |
spellingShingle | Camille Crouzet Camille Crouzet Camille Crouzet Fabrice Brunet Nadir Recham Nadir Recham Anne-Line Auzende Nathaniel Findling Valérie Magnin Jean-Henry Ferrasse Bruno Goffé Hydrothermal Steel Slag Valorization—Part II: Hydrogen and Nano-Magnetite Production Frontiers in Earth Science magnetite nanoparticles BOF steel slag hydrothermal oxidation hydrogen production |
title | Hydrothermal Steel Slag Valorization—Part II: Hydrogen and Nano-Magnetite Production |
title_full | Hydrothermal Steel Slag Valorization—Part II: Hydrogen and Nano-Magnetite Production |
title_fullStr | Hydrothermal Steel Slag Valorization—Part II: Hydrogen and Nano-Magnetite Production |
title_full_unstemmed | Hydrothermal Steel Slag Valorization—Part II: Hydrogen and Nano-Magnetite Production |
title_short | Hydrothermal Steel Slag Valorization—Part II: Hydrogen and Nano-Magnetite Production |
title_sort | hydrothermal steel slag valorization part ii hydrogen and nano magnetite production |
topic | magnetite nanoparticles BOF steel slag hydrothermal oxidation hydrogen production |
url | http://journal.frontiersin.org/article/10.3389/feart.2017.00086/full |
work_keys_str_mv | AT camillecrouzet hydrothermalsteelslagvalorizationpartiihydrogenandnanomagnetiteproduction AT camillecrouzet hydrothermalsteelslagvalorizationpartiihydrogenandnanomagnetiteproduction AT camillecrouzet hydrothermalsteelslagvalorizationpartiihydrogenandnanomagnetiteproduction AT fabricebrunet hydrothermalsteelslagvalorizationpartiihydrogenandnanomagnetiteproduction AT nadirrecham hydrothermalsteelslagvalorizationpartiihydrogenandnanomagnetiteproduction AT nadirrecham hydrothermalsteelslagvalorizationpartiihydrogenandnanomagnetiteproduction AT annelineauzende hydrothermalsteelslagvalorizationpartiihydrogenandnanomagnetiteproduction AT nathanielfindling hydrothermalsteelslagvalorizationpartiihydrogenandnanomagnetiteproduction AT valeriemagnin hydrothermalsteelslagvalorizationpartiihydrogenandnanomagnetiteproduction AT jeanhenryferrasse hydrothermalsteelslagvalorizationpartiihydrogenandnanomagnetiteproduction AT brunogoffe hydrothermalsteelslagvalorizationpartiihydrogenandnanomagnetiteproduction |