Hydrothermal Steel Slag Valorization—Part II: Hydrogen and Nano-Magnetite Production

The effect of acidic conditions (in a pH range of 3 to 6) and temperature on the kinetics of the hydrothermal oxidation of ferrous iron contained in BOF steel slag has been tested in the 150–350°C range for acid acetic concentrations from 0 to 4 M. Reaction progress was monitored with the amount of...

Full description

Bibliographic Details
Main Authors: Camille Crouzet, Fabrice Brunet, Nadir Recham, Anne-Line Auzende, Nathaniel Findling, Valérie Magnin, Jean-Henry Ferrasse, Bruno Goffé
Format: Article
Language:English
Published: Frontiers Media S.A. 2017-10-01
Series:Frontiers in Earth Science
Subjects:
Online Access:http://journal.frontiersin.org/article/10.3389/feart.2017.00086/full
_version_ 1819209931927060480
author Camille Crouzet
Camille Crouzet
Camille Crouzet
Fabrice Brunet
Nadir Recham
Nadir Recham
Anne-Line Auzende
Nathaniel Findling
Valérie Magnin
Jean-Henry Ferrasse
Bruno Goffé
author_facet Camille Crouzet
Camille Crouzet
Camille Crouzet
Fabrice Brunet
Nadir Recham
Nadir Recham
Anne-Line Auzende
Nathaniel Findling
Valérie Magnin
Jean-Henry Ferrasse
Bruno Goffé
author_sort Camille Crouzet
collection DOAJ
description The effect of acidic conditions (in a pH range of 3 to 6) and temperature on the kinetics of the hydrothermal oxidation of ferrous iron contained in BOF steel slag has been tested in the 150–350°C range for acid acetic concentrations from 0 to 4 M. Reaction progress was monitored with the amount of produced H2. Higher temperature and lower pH are found to enhance the hydrothermal oxidation kinetics of the slag. These two parameters are believed to increase iron dissolution rate which has already been identified as the rate limiting step of the hydrothermal oxidation of pure FeO. An activation energy of 28 ± 4 kJ/mole is found for the hydrothermal oxidation of the steel slag which compares very well with that of pure FeO under similar conditions. In the case of the slag run in water at 300°C for 70.5 h, magnetite product has been separated magnetically and characterized. Particles were found to fall in three size ranges: 10–30 nm, 100–300 nm, and 1–10 μm. The smallest fraction (10–30 nm) is comparable to the 10–20 nm size range that is achieved when nanomagnetite are synthesized by co-precipitation methods. Obviously, the production of nanomagnetite enhances the economic interest of the hydrothermal processing of steel slags, which has already proven its capacity to produce high-purity H2.
first_indexed 2024-12-23T06:03:08Z
format Article
id doaj.art-c09ce2279f404d6daf15d040c6609a78
institution Directory Open Access Journal
issn 2296-6463
language English
last_indexed 2024-12-23T06:03:08Z
publishDate 2017-10-01
publisher Frontiers Media S.A.
record_format Article
series Frontiers in Earth Science
spelling doaj.art-c09ce2279f404d6daf15d040c6609a782022-12-21T17:57:37ZengFrontiers Media S.A.Frontiers in Earth Science2296-64632017-10-01510.3389/feart.2017.00086295546Hydrothermal Steel Slag Valorization—Part II: Hydrogen and Nano-Magnetite ProductionCamille Crouzet0Camille Crouzet1Camille Crouzet2Fabrice Brunet3Nadir Recham4Nadir Recham5Anne-Line Auzende6Nathaniel Findling7Valérie Magnin8Jean-Henry Ferrasse9Bruno Goffé10Univ. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, FranceLRCS, CNRS-UMR7314, Univ. Picardie Jules Verne, Amiens, FranceAix Marseille Univ., CNRS, Centrale Marseille, M2P2, Marseille, FranceUniv. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, FranceLRCS, CNRS-UMR7314, Univ. Picardie Jules Verne, Amiens, FranceRS2E, FR CNRS 3459, Univ. Picardie Jules Verne, Amiens, FranceUniv. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, FranceUniv. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, FranceUniv. Grenoble Alpes, Univ. Savoie Mont Blanc, CNRS, IRD, IFSTTAR, ISTerre, Grenoble, FranceAix Marseille Univ., CNRS, Centrale Marseille, M2P2, Marseille, FranceAix-Marseille Univ., CNRS, IRD, Collège de France, CEREGE, Aix en Provence, FranceThe effect of acidic conditions (in a pH range of 3 to 6) and temperature on the kinetics of the hydrothermal oxidation of ferrous iron contained in BOF steel slag has been tested in the 150–350°C range for acid acetic concentrations from 0 to 4 M. Reaction progress was monitored with the amount of produced H2. Higher temperature and lower pH are found to enhance the hydrothermal oxidation kinetics of the slag. These two parameters are believed to increase iron dissolution rate which has already been identified as the rate limiting step of the hydrothermal oxidation of pure FeO. An activation energy of 28 ± 4 kJ/mole is found for the hydrothermal oxidation of the steel slag which compares very well with that of pure FeO under similar conditions. In the case of the slag run in water at 300°C for 70.5 h, magnetite product has been separated magnetically and characterized. Particles were found to fall in three size ranges: 10–30 nm, 100–300 nm, and 1–10 μm. The smallest fraction (10–30 nm) is comparable to the 10–20 nm size range that is achieved when nanomagnetite are synthesized by co-precipitation methods. Obviously, the production of nanomagnetite enhances the economic interest of the hydrothermal processing of steel slags, which has already proven its capacity to produce high-purity H2.http://journal.frontiersin.org/article/10.3389/feart.2017.00086/fullmagnetitenanoparticlesBOF steel slaghydrothermal oxidationhydrogen production
spellingShingle Camille Crouzet
Camille Crouzet
Camille Crouzet
Fabrice Brunet
Nadir Recham
Nadir Recham
Anne-Line Auzende
Nathaniel Findling
Valérie Magnin
Jean-Henry Ferrasse
Bruno Goffé
Hydrothermal Steel Slag Valorization—Part II: Hydrogen and Nano-Magnetite Production
Frontiers in Earth Science
magnetite
nanoparticles
BOF steel slag
hydrothermal oxidation
hydrogen production
title Hydrothermal Steel Slag Valorization—Part II: Hydrogen and Nano-Magnetite Production
title_full Hydrothermal Steel Slag Valorization—Part II: Hydrogen and Nano-Magnetite Production
title_fullStr Hydrothermal Steel Slag Valorization—Part II: Hydrogen and Nano-Magnetite Production
title_full_unstemmed Hydrothermal Steel Slag Valorization—Part II: Hydrogen and Nano-Magnetite Production
title_short Hydrothermal Steel Slag Valorization—Part II: Hydrogen and Nano-Magnetite Production
title_sort hydrothermal steel slag valorization part ii hydrogen and nano magnetite production
topic magnetite
nanoparticles
BOF steel slag
hydrothermal oxidation
hydrogen production
url http://journal.frontiersin.org/article/10.3389/feart.2017.00086/full
work_keys_str_mv AT camillecrouzet hydrothermalsteelslagvalorizationpartiihydrogenandnanomagnetiteproduction
AT camillecrouzet hydrothermalsteelslagvalorizationpartiihydrogenandnanomagnetiteproduction
AT camillecrouzet hydrothermalsteelslagvalorizationpartiihydrogenandnanomagnetiteproduction
AT fabricebrunet hydrothermalsteelslagvalorizationpartiihydrogenandnanomagnetiteproduction
AT nadirrecham hydrothermalsteelslagvalorizationpartiihydrogenandnanomagnetiteproduction
AT nadirrecham hydrothermalsteelslagvalorizationpartiihydrogenandnanomagnetiteproduction
AT annelineauzende hydrothermalsteelslagvalorizationpartiihydrogenandnanomagnetiteproduction
AT nathanielfindling hydrothermalsteelslagvalorizationpartiihydrogenandnanomagnetiteproduction
AT valeriemagnin hydrothermalsteelslagvalorizationpartiihydrogenandnanomagnetiteproduction
AT jeanhenryferrasse hydrothermalsteelslagvalorizationpartiihydrogenandnanomagnetiteproduction
AT brunogoffe hydrothermalsteelslagvalorizationpartiihydrogenandnanomagnetiteproduction