Existence of solutions for Kirchhoff-type systems with critical Sobolev exponents in $ \mathbb{R}^3 $

<p>In this paper, we study the following Kirchhoff-type system:</p> <p class="disp_formula">$ \begin{equation} \left\{ \begin{array}{ll} -(a_{1}+b_{1}\int_{\mathbb{R}^{3}}|\nabla u|^{2}dx)\Delta u = \frac{2\alpha}{\alpha+\beta}|u|^{\alpha-2}u|v|^{\beta}+\varepsilo...

Full description

Bibliographic Details
Main Authors: Xing Yi, Shuhou Ye
Format: Article
Language:English
Published: AIMS Press 2023-07-01
Series:Electronic Research Archive
Subjects:
Online Access:https://www.aimspress.com/article/doi/10.3934/era.2023269?viewType=HTML
_version_ 1827791818983473152
author Xing Yi
Shuhou Ye
author_facet Xing Yi
Shuhou Ye
author_sort Xing Yi
collection DOAJ
description <p>In this paper, we study the following Kirchhoff-type system:</p> <p class="disp_formula">$ \begin{equation} \left\{ \begin{array}{ll} -(a_{1}+b_{1}\int_{\mathbb{R}^{3}}|\nabla u|^{2}dx)\Delta u = \frac{2\alpha}{\alpha+\beta}|u|^{\alpha-2}u|v|^{\beta}+\varepsilon f(x), \\ -(a_{2}+b_{2}\int_{\mathbb{R}^{3}}|\nabla v|^{2}dx)\Delta v = \frac{2\beta}{\alpha+\beta}|u|^{\alpha}|v|^{\beta-2}v+\varepsilon g(x), \\ (u, v)\in D^{1, 2}(\mathbb{R}^{3})\times D^{1, 2}(\mathbb{R}^{3}), \end{array} \right. \end{equation} $</p> <p>where $ a_{1}, a_{2}\geq0, \; b_{1}, b_{2} &gt; 0, \; \alpha, \beta &gt; 1, \; \alpha+\beta = 6 $ and $ f(x), g(x)\geq0, \; f(x), g(x)\in L^{\frac{6}{5}}(\mathbb{R}^3). $ The aim of this paper is to demonstrate the existence of at least two solutions for system (0.1), utilizing the variational method. To achieve this, we construct an energy functional and analyze its critical points by applying the Ekeland variational principle, the mountain pass lemma and the concentration compactness principle.</p>
first_indexed 2024-03-11T17:52:19Z
format Article
id doaj.art-c09f3d441d954197ab64769115939c2e
institution Directory Open Access Journal
issn 2688-1594
language English
last_indexed 2024-03-11T17:52:19Z
publishDate 2023-07-01
publisher AIMS Press
record_format Article
series Electronic Research Archive
spelling doaj.art-c09f3d441d954197ab64769115939c2e2023-10-18T01:13:28ZengAIMS PressElectronic Research Archive2688-15942023-07-013195286531210.3934/era.2023269Existence of solutions for Kirchhoff-type systems with critical Sobolev exponents in $ \mathbb{R}^3 $Xing Yi0Shuhou Ye 1College of Mathematics and Statistics, Hunan Normal University, Hunan, ChinaCollege of Mathematics and Statistics, Hunan Normal University, Hunan, China<p>In this paper, we study the following Kirchhoff-type system:</p> <p class="disp_formula">$ \begin{equation} \left\{ \begin{array}{ll} -(a_{1}+b_{1}\int_{\mathbb{R}^{3}}|\nabla u|^{2}dx)\Delta u = \frac{2\alpha}{\alpha+\beta}|u|^{\alpha-2}u|v|^{\beta}+\varepsilon f(x), \\ -(a_{2}+b_{2}\int_{\mathbb{R}^{3}}|\nabla v|^{2}dx)\Delta v = \frac{2\beta}{\alpha+\beta}|u|^{\alpha}|v|^{\beta-2}v+\varepsilon g(x), \\ (u, v)\in D^{1, 2}(\mathbb{R}^{3})\times D^{1, 2}(\mathbb{R}^{3}), \end{array} \right. \end{equation} $</p> <p>where $ a_{1}, a_{2}\geq0, \; b_{1}, b_{2} &gt; 0, \; \alpha, \beta &gt; 1, \; \alpha+\beta = 6 $ and $ f(x), g(x)\geq0, \; f(x), g(x)\in L^{\frac{6}{5}}(\mathbb{R}^3). $ The aim of this paper is to demonstrate the existence of at least two solutions for system (0.1), utilizing the variational method. To achieve this, we construct an energy functional and analyze its critical points by applying the Ekeland variational principle, the mountain pass lemma and the concentration compactness principle.</p>https://www.aimspress.com/article/doi/10.3934/era.2023269?viewType=HTMLpositive solutionskirchhoff-type systemscritical sobolev exponentconcentration compactness principlemountain pass lemma
spellingShingle Xing Yi
Shuhou Ye
Existence of solutions for Kirchhoff-type systems with critical Sobolev exponents in $ \mathbb{R}^3 $
Electronic Research Archive
positive solutions
kirchhoff-type systems
critical sobolev exponent
concentration compactness principle
mountain pass lemma
title Existence of solutions for Kirchhoff-type systems with critical Sobolev exponents in $ \mathbb{R}^3 $
title_full Existence of solutions for Kirchhoff-type systems with critical Sobolev exponents in $ \mathbb{R}^3 $
title_fullStr Existence of solutions for Kirchhoff-type systems with critical Sobolev exponents in $ \mathbb{R}^3 $
title_full_unstemmed Existence of solutions for Kirchhoff-type systems with critical Sobolev exponents in $ \mathbb{R}^3 $
title_short Existence of solutions for Kirchhoff-type systems with critical Sobolev exponents in $ \mathbb{R}^3 $
title_sort existence of solutions for kirchhoff type systems with critical sobolev exponents in mathbb r 3
topic positive solutions
kirchhoff-type systems
critical sobolev exponent
concentration compactness principle
mountain pass lemma
url https://www.aimspress.com/article/doi/10.3934/era.2023269?viewType=HTML
work_keys_str_mv AT xingyi existenceofsolutionsforkirchhofftypesystemswithcriticalsobolevexponentsinmathbbr3
AT shuhouye existenceofsolutionsforkirchhofftypesystemswithcriticalsobolevexponentsinmathbbr3