ON THE STRUCTURE OF THE OPERATOR COADJOINT ACTION FOR THE CURRENT ALGEBRA ON THE THREE-DIMENSIONAL TORUS

For the current Lie algebra on the three-dimensional torus with non-standard Lie bracket some properties, in the case when the sum of adjoint and coadjoint operators on infinite-dimensional Lie algebra with scalar product has a finite norm are established. For the Landau-Lifshitz equation in the thr...

Full description

Bibliographic Details
Main Author: A. M. Lukatsky
Format: Article
Language:Russian
Published: Moscow State Technical University of Civil Aviation 2017-05-01
Series:Научный вестник МГТУ ГА
Subjects:
Online Access:https://avia.mstuca.ru/jour/article/view/1064
_version_ 1797882967993876480
author A. M. Lukatsky
author_facet A. M. Lukatsky
author_sort A. M. Lukatsky
collection DOAJ
description For the current Lie algebra on the three-dimensional torus with non-standard Lie bracket some properties, in the case when the sum of adjoint and coadjoint operators on infinite-dimensional Lie algebra with scalar product has a finite norm are established. For the Landau-Lifshitz equation in the three-dimensional torus it is established that the operatorm mS = (ad+ ad* ) / 2mhas a finite norm, though it is not true the operators of the adjoint action adm and coadjoint ac-mtion ad ∗ . It follows that the coefficients of expansion of the solution in an orthonormal basis of eigenvectors of the La- place operator satisfy Lipschitz conditions. Thus, for the Landau-Lifshitz equation on the three-dimensional torus situationis similar to the equations of an ideal fluid and Korteweg de Vries. On the other hand, if for the equations of fluid dynamicsand Korteweg de Vries, this fact has been established in a general way, for the Landau-Lifshitz equation in the three- dimensional torus it is obtained specifically through the calculation of structural constants and the matrix of the coadjoint action for the current algebra with non-standard Lie bracket.
first_indexed 2024-04-10T03:43:00Z
format Article
id doaj.art-c0b10a8fbdf2498c8651a3f917014f8c
institution Directory Open Access Journal
issn 2079-0619
2542-0119
language Russian
last_indexed 2024-04-10T03:43:00Z
publishDate 2017-05-01
publisher Moscow State Technical University of Civil Aviation
record_format Article
series Научный вестник МГТУ ГА
spelling doaj.art-c0b10a8fbdf2498c8651a3f917014f8c2023-03-13T07:19:18ZrusMoscow State Technical University of Civil AviationНаучный вестник МГТУ ГА2079-06192542-01192017-05-012021171251064ON THE STRUCTURE OF THE OPERATOR COADJOINT ACTION FOR THE CURRENT ALGEBRA ON THE THREE-DIMENSIONAL TORUSA. M. Lukatsky0Институт энергетических исследований РАНFor the current Lie algebra on the three-dimensional torus with non-standard Lie bracket some properties, in the case when the sum of adjoint and coadjoint operators on infinite-dimensional Lie algebra with scalar product has a finite norm are established. For the Landau-Lifshitz equation in the three-dimensional torus it is established that the operatorm mS = (ad+ ad* ) / 2mhas a finite norm, though it is not true the operators of the adjoint action adm and coadjoint ac-mtion ad ∗ . It follows that the coefficients of expansion of the solution in an orthonormal basis of eigenvectors of the La- place operator satisfy Lipschitz conditions. Thus, for the Landau-Lifshitz equation on the three-dimensional torus situationis similar to the equations of an ideal fluid and Korteweg de Vries. On the other hand, if for the equations of fluid dynamicsand Korteweg de Vries, this fact has been established in a general way, for the Landau-Lifshitz equation in the three- dimensional torus it is obtained specifically through the calculation of structural constants and the matrix of the coadjoint action for the current algebra with non-standard Lie bracket.https://avia.mstuca.ru/jour/article/view/1064алгебра токовскобка лидействие присоединённого оператораоператор коприсоеди- нённого действиятрёхмерный торуравнение ландау - лифшицакомпактный операторусловие липшица
spellingShingle A. M. Lukatsky
ON THE STRUCTURE OF THE OPERATOR COADJOINT ACTION FOR THE CURRENT ALGEBRA ON THE THREE-DIMENSIONAL TORUS
Научный вестник МГТУ ГА
алгебра токов
скобка ли
действие присоединённого оператора
оператор коприсоеди- нённого действия
трёхмерный тор
уравнение ландау - лифшица
компактный оператор
условие липшица
title ON THE STRUCTURE OF THE OPERATOR COADJOINT ACTION FOR THE CURRENT ALGEBRA ON THE THREE-DIMENSIONAL TORUS
title_full ON THE STRUCTURE OF THE OPERATOR COADJOINT ACTION FOR THE CURRENT ALGEBRA ON THE THREE-DIMENSIONAL TORUS
title_fullStr ON THE STRUCTURE OF THE OPERATOR COADJOINT ACTION FOR THE CURRENT ALGEBRA ON THE THREE-DIMENSIONAL TORUS
title_full_unstemmed ON THE STRUCTURE OF THE OPERATOR COADJOINT ACTION FOR THE CURRENT ALGEBRA ON THE THREE-DIMENSIONAL TORUS
title_short ON THE STRUCTURE OF THE OPERATOR COADJOINT ACTION FOR THE CURRENT ALGEBRA ON THE THREE-DIMENSIONAL TORUS
title_sort on the structure of the operator coadjoint action for the current algebra on the three dimensional torus
topic алгебра токов
скобка ли
действие присоединённого оператора
оператор коприсоеди- нённого действия
трёхмерный тор
уравнение ландау - лифшица
компактный оператор
условие липшица
url https://avia.mstuca.ru/jour/article/view/1064
work_keys_str_mv AT amlukatsky onthestructureoftheoperatorcoadjointactionforthecurrentalgebraonthethreedimensionaltorus