Summary: | In the field of optical sensors, small molecules responsive to metal cations are of current interest. Probes displaying aggregation-induced emission (AIE) can solve the problems due to the aggregation-caused quenching (ACQ) molecules, scarcely emissive as aggregates in aqueous media and in tissues. The addition of a metal cation to an AIE ligand dissolved in solution can cause a “turn-on” of the fluorescence emission. Half-cruciform-shaped molecules can be a winning strategy to build specific AIE probes. Herein, we report the synthesis and characterization of a novel L-shaped fluorophore containing a benzofuran core condensed with 3-hydroxy-2-naphthaldehyde crossed with a nitrobenzene moiety. The novel AIE probe produces a fast colorimetric and fluorescence response toward zinc (II) in both in neutral and basic conditions. Acting as a tridentate ligand, it produces a complex with enhanced and red-shifted emission in the DR/NIR spectral range. The AIE nature of both compounds was examined on the basis of X-ray crystallography and DFT analysis.
|