THE WEIGHT PART OF SERRE’S CONJECTURE FOR $\text{GL}(2)$

Let $p>2$ be prime. We use purely local methods to determine the possible reductions of certain two-dimensional crystalline representations, which we call pseudo-Barsotti–Tate representations, over arbitrary finite extensions of $\mathbb{Q}_{p}$. As a consequence, we establish (under the usual Ta...

Full description

Bibliographic Details
Main Authors: TOBY GEE, TONG LIU, DAVID SAVITT
Format: Article
Language:English
Published: Cambridge University Press 2015-02-01
Series:Forum of Mathematics, Pi
Subjects:
Online Access:https://www.cambridge.org/core/product/identifier/S2050508615000013/type/journal_article
_version_ 1811156256994361344
author TOBY GEE
TONG LIU
DAVID SAVITT
author_facet TOBY GEE
TONG LIU
DAVID SAVITT
author_sort TOBY GEE
collection DOAJ
description Let $p>2$ be prime. We use purely local methods to determine the possible reductions of certain two-dimensional crystalline representations, which we call pseudo-Barsotti–Tate representations, over arbitrary finite extensions of $\mathbb{Q}_{p}$. As a consequence, we establish (under the usual Taylor–Wiles hypothesis) the weight part of Serre’s conjecture for $\text{GL}(2)$ over arbitrary totally real fields.
first_indexed 2024-04-10T04:48:37Z
format Article
id doaj.art-c0b66f88faa5471f88ac14c92f3ee319
institution Directory Open Access Journal
issn 2050-5086
language English
last_indexed 2024-04-10T04:48:37Z
publishDate 2015-02-01
publisher Cambridge University Press
record_format Article
series Forum of Mathematics, Pi
spelling doaj.art-c0b66f88faa5471f88ac14c92f3ee3192023-03-09T12:34:22ZengCambridge University PressForum of Mathematics, Pi2050-50862015-02-01310.1017/fmp.2015.1THE WEIGHT PART OF SERRE’S CONJECTURE FOR $\text{GL}(2)$TOBY GEE0TONG LIU1DAVID SAVITT2Department of Mathematics, Imperial College London SW7 2RH, UK;Department of Mathematics, Purdue University, West Lafayette, IN 47907, USA;Department of Mathematics, University of Arizona, Tucson, AZ 85721, USA;Let $p>2$ be prime. We use purely local methods to determine the possible reductions of certain two-dimensional crystalline representations, which we call pseudo-Barsotti–Tate representations, over arbitrary finite extensions of $\mathbb{Q}_{p}$. As a consequence, we establish (under the usual Taylor–Wiles hypothesis) the weight part of Serre’s conjecture for $\text{GL}(2)$ over arbitrary totally real fields.https://www.cambridge.org/core/product/identifier/S2050508615000013/type/journal_article11F33 (primary)11F80 (secondary)
spellingShingle TOBY GEE
TONG LIU
DAVID SAVITT
THE WEIGHT PART OF SERRE’S CONJECTURE FOR $\text{GL}(2)$
Forum of Mathematics, Pi
11F33 (primary)
11F80 (secondary)
title THE WEIGHT PART OF SERRE’S CONJECTURE FOR $\text{GL}(2)$
title_full THE WEIGHT PART OF SERRE’S CONJECTURE FOR $\text{GL}(2)$
title_fullStr THE WEIGHT PART OF SERRE’S CONJECTURE FOR $\text{GL}(2)$
title_full_unstemmed THE WEIGHT PART OF SERRE’S CONJECTURE FOR $\text{GL}(2)$
title_short THE WEIGHT PART OF SERRE’S CONJECTURE FOR $\text{GL}(2)$
title_sort weight part of serre s conjecture for text gl 2
topic 11F33 (primary)
11F80 (secondary)
url https://www.cambridge.org/core/product/identifier/S2050508615000013/type/journal_article
work_keys_str_mv AT tobygee theweightpartofserresconjecturefortextgl2
AT tongliu theweightpartofserresconjecturefortextgl2
AT davidsavitt theweightpartofserresconjecturefortextgl2
AT tobygee weightpartofserresconjecturefortextgl2
AT tongliu weightpartofserresconjecturefortextgl2
AT davidsavitt weightpartofserresconjecturefortextgl2