On statistical A $\mathfrak{A}$ -Cauchy and statistical A $\mathfrak{A}$ -summability via ideal

Abstract The notion of statistical convergence was extended to I $\mathfrak{I}$ -convergence by (Kostyrko et al. in Real Anal. Exch. 26(2):669–686, 2000). In this paper we use such technique and introduce the notion of statistically A I $\mathfrak{A}^{\mathfrak{I}}$ -Cauchy and statistically A I ∗ $...

Full description

Bibliographic Details
Main Authors: Osama H. H. Edely, M. Mursaleen
Format: Article
Language:English
Published: SpringerOpen 2021-02-01
Series:Journal of Inequalities and Applications
Subjects:
Online Access:https://doi.org/10.1186/s13660-021-02564-4
_version_ 1828963159071784960
author Osama H. H. Edely
M. Mursaleen
author_facet Osama H. H. Edely
M. Mursaleen
author_sort Osama H. H. Edely
collection DOAJ
description Abstract The notion of statistical convergence was extended to I $\mathfrak{I}$ -convergence by (Kostyrko et al. in Real Anal. Exch. 26(2):669–686, 2000). In this paper we use such technique and introduce the notion of statistically A I $\mathfrak{A}^{\mathfrak{I}}$ -Cauchy and statistically A I ∗ $\mathfrak{A}^{\mathfrak{I}^{\ast }}$ -Cauchy summability via the notion of ideal. We obtain some relations between them and prove that under certain conditions statistical A I $\mathfrak{A}^{\mathfrak{I}}$ -Cauchy and statistical A I ∗ $\mathfrak{A}^{\mathfrak{I}^{\ast }}$ -Cauchy summability are equivalent. Moreover, we give some Tauberian theorems for statistical A I $\mathfrak{A}^{\mathfrak{I}}$ -summability.
first_indexed 2024-12-14T10:20:48Z
format Article
id doaj.art-c0c58a0bd9a947a889ec3d0ddbd5f1a0
institution Directory Open Access Journal
issn 1029-242X
language English
last_indexed 2024-12-14T10:20:48Z
publishDate 2021-02-01
publisher SpringerOpen
record_format Article
series Journal of Inequalities and Applications
spelling doaj.art-c0c58a0bd9a947a889ec3d0ddbd5f1a02022-12-21T23:06:36ZengSpringerOpenJournal of Inequalities and Applications1029-242X2021-02-012021111110.1186/s13660-021-02564-4On statistical A $\mathfrak{A}$ -Cauchy and statistical A $\mathfrak{A}$ -summability via idealOsama H. H. Edely0M. Mursaleen1Department of Mathematics, Tafila Technical UniversityDepartment of Mathematics, Aligarh Muslim UniversityAbstract The notion of statistical convergence was extended to I $\mathfrak{I}$ -convergence by (Kostyrko et al. in Real Anal. Exch. 26(2):669–686, 2000). In this paper we use such technique and introduce the notion of statistically A I $\mathfrak{A}^{\mathfrak{I}}$ -Cauchy and statistically A I ∗ $\mathfrak{A}^{\mathfrak{I}^{\ast }}$ -Cauchy summability via the notion of ideal. We obtain some relations between them and prove that under certain conditions statistical A I $\mathfrak{A}^{\mathfrak{I}}$ -Cauchy and statistical A I ∗ $\mathfrak{A}^{\mathfrak{I}^{\ast }}$ -Cauchy summability are equivalent. Moreover, we give some Tauberian theorems for statistical A I $\mathfrak{A}^{\mathfrak{I}}$ -summability.https://doi.org/10.1186/s13660-021-02564-4Statistical A I $\mathfrak{A}^{\mathfrak{I}}$ -limit superiorStatistical A I $\mathfrak{A}^{\mathfrak{I}}$ -limit inferiorStatistical A I $\mathfrak{A}^{\mathfrak{I}}$ -boundedStatistical A I $\mathfrak{A}^{\mathfrak{I}}$ -Cauchy summabilityStatistical A I ∗ $\mathfrak{A}^{\mathfrak{I}^{\ast }}$ -Cauchy summabilityTauberian theorem
spellingShingle Osama H. H. Edely
M. Mursaleen
On statistical A $\mathfrak{A}$ -Cauchy and statistical A $\mathfrak{A}$ -summability via ideal
Journal of Inequalities and Applications
Statistical A I $\mathfrak{A}^{\mathfrak{I}}$ -limit superior
Statistical A I $\mathfrak{A}^{\mathfrak{I}}$ -limit inferior
Statistical A I $\mathfrak{A}^{\mathfrak{I}}$ -bounded
Statistical A I $\mathfrak{A}^{\mathfrak{I}}$ -Cauchy summability
Statistical A I ∗ $\mathfrak{A}^{\mathfrak{I}^{\ast }}$ -Cauchy summability
Tauberian theorem
title On statistical A $\mathfrak{A}$ -Cauchy and statistical A $\mathfrak{A}$ -summability via ideal
title_full On statistical A $\mathfrak{A}$ -Cauchy and statistical A $\mathfrak{A}$ -summability via ideal
title_fullStr On statistical A $\mathfrak{A}$ -Cauchy and statistical A $\mathfrak{A}$ -summability via ideal
title_full_unstemmed On statistical A $\mathfrak{A}$ -Cauchy and statistical A $\mathfrak{A}$ -summability via ideal
title_short On statistical A $\mathfrak{A}$ -Cauchy and statistical A $\mathfrak{A}$ -summability via ideal
title_sort on statistical a mathfrak a cauchy and statistical a mathfrak a summability via ideal
topic Statistical A I $\mathfrak{A}^{\mathfrak{I}}$ -limit superior
Statistical A I $\mathfrak{A}^{\mathfrak{I}}$ -limit inferior
Statistical A I $\mathfrak{A}^{\mathfrak{I}}$ -bounded
Statistical A I $\mathfrak{A}^{\mathfrak{I}}$ -Cauchy summability
Statistical A I ∗ $\mathfrak{A}^{\mathfrak{I}^{\ast }}$ -Cauchy summability
Tauberian theorem
url https://doi.org/10.1186/s13660-021-02564-4
work_keys_str_mv AT osamahhedely onstatisticalamathfrakacauchyandstatisticalamathfrakasummabilityviaideal
AT mmursaleen onstatisticalamathfrakacauchyandstatisticalamathfrakasummabilityviaideal