Accelerated Genetic Gains in Early-Maturing Maize Hybrids following Three Periods of Genetic Enhancement for Grain Yield under Low and High Soil-Nitrogen Environments

Maize (<i>Zea mays</i> L.) is an important staple, as well as cash crop, in sub-Saharan Africa (SSA). However, its production is severely constrained by low soil nitrogen (low N). Fifty-four early-maturing hybrids developed during three breeding periods, (2008–2010, 2011–2013 and 2014–20...

Full description

Bibliographic Details
Main Authors: Baffour Badu-Apraku, Morakinyo Abiodun Bamidele Fakorede, Adamu Masari Abubakar
Format: Article
Language:English
Published: MDPI AG 2022-04-01
Series:Plants
Subjects:
Online Access:https://www.mdpi.com/2223-7747/11/9/1208
Description
Summary:Maize (<i>Zea mays</i> L.) is an important staple, as well as cash crop, in sub-Saharan Africa (SSA). However, its production is severely constrained by low soil nitrogen (low N). Fifty-four early-maturing hybrids developed during three breeding periods, (2008–2010, 2011–2013 and 2014–2016) were evaluated under low (30 kg ha<sup>−1</sup>) and high (120 kg ha<sup>−1</sup>) soil nitrogen (N) in Ile-Ife and Mokwa, Nigeria, from 2017 to 2019. The study was designed to (i) determine the genetic gains in grain yield of the early-maturing maize hybrids developed during the three breeding periods, (ii) determine the relationship between grain yield and other agronomic traits and (iii) identify the highest-yielding and most stable hybrids under low- and high-N environments. The 54 hybrids were evaluated using a 6 × 9 lattice design with three replications. Mean squares for hybrids were significant for measured traits under low- and high-N environments, except the mean squares for stalk lodging and EPP under low N. Annual genetic gains in grain yield were 75 kg ha<sup>−1</sup> year<sup>−1</sup> (2.91%) and 55 kg ha<sup>−1</sup> year<sup>−1</sup> (1.33%) under low- and high-N environments, respectively, indicating that substantial gains were achieved in the genetic enhancement of the early-maturing hybrids. The hybrids TZdEI 314 × TZdEI 105, TZdEI 378 × TZdEI 173, ENT 12 × TZEI 48 and TZdEI 352 × TZdEI 315 were identified as the highest-yielding and most stable across test environments and should be tested extensively on farms and commercialized in SSA.
ISSN:2223-7747