Large Curvature Self-Folding Method of a Thick Metal Layer for Hinged Origami/Kirigami Stretchable Electronic Devices

A self-folding method that can fold a thick (~10 μm) metal layer with a large curvature (>1 mm<sup>−1</sup>) and is resistant to repetitive folding deformation is proposed. Given the successful usage of hinged origami/kirigami structures forms in deployable structures, they show stron...

Full description

Bibliographic Details
Main Authors: Atsushi Eda, Hiroki Yasuga, Takashi Sato, Yusuke Sato, Kai Suto, Tomohiro Tachi, Eiji Iwase
Format: Article
Language:English
Published: MDPI AG 2022-06-01
Series:Micromachines
Subjects:
Online Access:https://www.mdpi.com/2072-666X/13/6/907
Description
Summary:A self-folding method that can fold a thick (~10 μm) metal layer with a large curvature (>1 mm<sup>−1</sup>) and is resistant to repetitive folding deformation is proposed. Given the successful usage of hinged origami/kirigami structures forms in deployable structures, they show strong potential for application in stretchable electronic devices. There are, however, two key difficulties in applying origami/kirigami methods to stretchable electronic devices. The first is that a thick metal layer used as the conductive layer of electronic devices is too hard for self-folding as it is. Secondly, a thick metal layer breaks on repetitive folding deformation at a large curvature. To overcome these difficulties, this paper proposes a self-folding method using hinges on a thick metal layer by applying a meander structure. Such a structure can be folded at a large curvature even by weak driving forces (such as those produced by self-folding) and has mechanical resistance to repetitive folding deformation due to the local torsional deformation of the meander structure. To verify the method, the large curvature self-folding of thick metal layers and their mechanical resistance to repetitive folding deformation is experimentally demonstrated. In addition, an origami/kirigami hybrid stretchable electronic device with light-emitting diodes (LEDs) is fabricated using a double-tiling structure called the perforated extruded Miura-ori.
ISSN:2072-666X