Southern Ocean latitudinal gradients of cloud condensation nuclei

<p>The Southern Ocean region is one of the most pristine in the world and serves as an important proxy for the pre-industrial atmosphere. Improving our understanding of the natural processes in this region is likely to result in the largest reductions in the uncertainty of climate and earth sy...

Full description

Bibliographic Details
Main Authors: R. S. Humphries, M. D. Keywood, S. Gribben, I. M. McRobert, J. P. Ward, P. Selleck, S. Taylor, J. Harnwell, C. Flynn, G. R. Kulkarni, G. G. Mace, A. Protat, S. P. Alexander, G. McFarquhar
Format: Article
Language:English
Published: Copernicus Publications 2021-08-01
Series:Atmospheric Chemistry and Physics
Online Access:https://acp.copernicus.org/articles/21/12757/2021/acp-21-12757-2021.pdf
_version_ 1818911470737424384
author R. S. Humphries
R. S. Humphries
M. D. Keywood
M. D. Keywood
S. Gribben
I. M. McRobert
J. P. Ward
P. Selleck
S. Taylor
J. Harnwell
C. Flynn
G. R. Kulkarni
G. G. Mace
A. Protat
A. Protat
S. P. Alexander
S. P. Alexander
G. McFarquhar
G. McFarquhar
author_facet R. S. Humphries
R. S. Humphries
M. D. Keywood
M. D. Keywood
S. Gribben
I. M. McRobert
J. P. Ward
P. Selleck
S. Taylor
J. Harnwell
C. Flynn
G. R. Kulkarni
G. G. Mace
A. Protat
A. Protat
S. P. Alexander
S. P. Alexander
G. McFarquhar
G. McFarquhar
author_sort R. S. Humphries
collection DOAJ
description <p>The Southern Ocean region is one of the most pristine in the world and serves as an important proxy for the pre-industrial atmosphere. Improving our understanding of the natural processes in this region is likely to result in the largest reductions in the uncertainty of climate and earth system models. While remoteness from anthropogenic and continental sources is responsible for its clean atmosphere, this also results in the dearth of atmospheric observations in the region. Here we present a statistical summary of the latitudinal gradient of aerosol (condensation nuclei larger than 10 nm, CN<span class="inline-formula"><sub>10</sub></span>) and cloud condensation nuclei (CCN at various supersaturations) concentrations obtained from five voyages spanning the Southern Ocean between Australia and Antarctica from late spring to early autumn (October to March) of the 2017/18 austral seasons. Three main regions of influence were identified: the northern sector (40–45<span class="inline-formula"><sup>∘</sup></span> S), where continental and anthropogenic sources coexisted with background marine aerosol populations; the mid-latitude sector (45–65<span class="inline-formula"><sup>∘</sup></span> S), where the aerosol populations reflected a mixture of biogenic and sea-salt aerosol; and the southern sector (65–70<span class="inline-formula"><sup>∘</sup></span> S), south of the atmospheric polar front, where sea-salt aerosol concentrations were greatly reduced and aerosol populations were primarily biologically derived sulfur species with a significant history in the Antarctic free troposphere. The northern sector showed the highest number concentrations with median (25th to 75th percentiles) CN<span class="inline-formula"><sub>10</sub></span> and CCN<span class="inline-formula"><sub>0.5</sub></span> concentrations of 681 (388–839) cm<span class="inline-formula"><sup>−3</sup></span> and 322 (105–443) cm<span class="inline-formula"><sup>−3</sup></span>, respectively. Concentrations in the mid-latitudes were typically around 350 cm<span class="inline-formula"><sup>−3</sup></span> and 160 cm<span class="inline-formula"><sup>−3</sup></span> for CN<span class="inline-formula"><sub>10</sub></span> and CCN<span class="inline-formula"><sub>0.5</sub></span>, respectively. In the southern sector, concentrations rose markedly, reaching 447 (298–446) cm<span class="inline-formula"><sup>−3</sup></span> and 232 (186–271) cm<span class="inline-formula"><sup>−3</sup></span> for CN<span class="inline-formula"><sub>10</sub></span> and CCN<span class="inline-formula"><sub>0.5</sub></span>, respectively. The aerosol composition in this sector was marked by a distinct drop in sea salt and increase in both sulfate fraction and absolute concentrations, resulting in a substantially higher CCN<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi/><mn mathvariant="normal">0.5</mn></msub><mo>/</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="20pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="1ca0f7f0cbab2293f1d1e6d5184f3377"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-12757-2021-ie00001.svg" width="20pt" height="14pt" src="acp-21-12757-2021-ie00001.png"/></svg:svg></span></span>CN<span class="inline-formula"><sub>10</sub></span> activation ratio of 0.8 compared to around 0.4 for mid-latitudes. Long-term measurements at land-based research stations surrounding the Southern Ocean were found to be good representations at their respective latitudes; however this study highlighted the need for more long-term measurements in the region. CCN observations at Cape Grim (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">40</mn><msup><mi/><mo>∘</mo></msup><msup><mn mathvariant="normal">39</mn><mo>′</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="34pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="666ce17390caa2e9437e22a67b9baad6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-12757-2021-ie00002.svg" width="34pt" height="11pt" src="acp-21-12757-2021-ie00002.png"/></svg:svg></span></span> S) corresponded with CCN measurements from northern and mid-latitude sectors, while CN<span class="inline-formula"><sub>10</sub></span> observations only corresponded with observations from the<span id="page12758"/> northern sector. Measurements from a simultaneous 2-year campaign at Macquarie Island (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M21" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">54</mn><msup><mi/><mo>∘</mo></msup><msup><mn mathvariant="normal">30</mn><mo>′</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="34pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="0918a3ee3731f893142f18257857e8cd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-12757-2021-ie00003.svg" width="34pt" height="11pt" src="acp-21-12757-2021-ie00003.png"/></svg:svg></span></span> S) were found to represent all aerosol species well. The southernmost latitudes differed significantly from both of these stations, and previous work suggests that Antarctic stations on the East Antarctic coastline do not represent the East Antarctic sea-ice latitudes well. Further measurements are needed to capture the long-term, seasonal and longitudinal variability in aerosol processes across the Southern Ocean.</p>
first_indexed 2024-12-19T22:59:13Z
format Article
id doaj.art-c0eb8cf0ef07444380eb80efd0036f50
institution Directory Open Access Journal
issn 1680-7316
1680-7324
language English
last_indexed 2024-12-19T22:59:13Z
publishDate 2021-08-01
publisher Copernicus Publications
record_format Article
series Atmospheric Chemistry and Physics
spelling doaj.art-c0eb8cf0ef07444380eb80efd0036f502022-12-21T20:02:34ZengCopernicus PublicationsAtmospheric Chemistry and Physics1680-73161680-73242021-08-0121127571278210.5194/acp-21-12757-2021Southern Ocean latitudinal gradients of cloud condensation nucleiR. S. Humphries0R. S. Humphries1M. D. Keywood2M. D. Keywood3S. Gribben4I. M. McRobert5J. P. Ward6P. Selleck7S. Taylor8J. Harnwell9C. Flynn10G. R. Kulkarni11G. G. Mace12A. Protat13A. Protat14S. P. Alexander15S. P. Alexander16G. McFarquhar17G. McFarquhar18Climate Science Centre, CSIRO Oceans and Atmosphere, Melbourne, AustraliaAustralian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, AustraliaClimate Science Centre, CSIRO Oceans and Atmosphere, Melbourne, AustraliaAustralian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, AustraliaClimate Science Centre, CSIRO Oceans and Atmosphere, Melbourne, AustraliaEngineering and Technology Program, CSIRO National Collections and Marine Infrastructure, Hobart, AustraliaClimate Science Centre, CSIRO Oceans and Atmosphere, Melbourne, AustraliaClimate Science Centre, CSIRO Oceans and Atmosphere, Melbourne, AustraliaClimate Science Centre, CSIRO Oceans and Atmosphere, Melbourne, AustraliaClimate Science Centre, CSIRO Oceans and Atmosphere, Melbourne, AustraliaSchool of Meteorology, University of Oklahoma, Norman, United States of AmericaAtmospheric Sciences and Global Change Division, Pacific Northwest National Laboratory, Richland, United States of AmericaDepartment of Atmospheric Science, University of Utah, Salt Lake City, United States of AmericaAustralian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, AustraliaAustralian Bureau of Meteorology, Melbourne, AustraliaAustralian Antarctic Program Partnership, Institute for Marine and Antarctic Studies, University of Tasmania, Hobart, Tasmania, AustraliaAustralian Antarctic Division, Channel Highway, Kingston, Tasmania 7050, AustraliaSchool of Meteorology, University of Oklahoma, Norman, United States of AmericaCooperative Institute for Mesoscale Meteorological Studies, University of Oklahoma, Norman, United States of America<p>The Southern Ocean region is one of the most pristine in the world and serves as an important proxy for the pre-industrial atmosphere. Improving our understanding of the natural processes in this region is likely to result in the largest reductions in the uncertainty of climate and earth system models. While remoteness from anthropogenic and continental sources is responsible for its clean atmosphere, this also results in the dearth of atmospheric observations in the region. Here we present a statistical summary of the latitudinal gradient of aerosol (condensation nuclei larger than 10 nm, CN<span class="inline-formula"><sub>10</sub></span>) and cloud condensation nuclei (CCN at various supersaturations) concentrations obtained from five voyages spanning the Southern Ocean between Australia and Antarctica from late spring to early autumn (October to March) of the 2017/18 austral seasons. Three main regions of influence were identified: the northern sector (40–45<span class="inline-formula"><sup>∘</sup></span> S), where continental and anthropogenic sources coexisted with background marine aerosol populations; the mid-latitude sector (45–65<span class="inline-formula"><sup>∘</sup></span> S), where the aerosol populations reflected a mixture of biogenic and sea-salt aerosol; and the southern sector (65–70<span class="inline-formula"><sup>∘</sup></span> S), south of the atmospheric polar front, where sea-salt aerosol concentrations were greatly reduced and aerosol populations were primarily biologically derived sulfur species with a significant history in the Antarctic free troposphere. The northern sector showed the highest number concentrations with median (25th to 75th percentiles) CN<span class="inline-formula"><sub>10</sub></span> and CCN<span class="inline-formula"><sub>0.5</sub></span> concentrations of 681 (388–839) cm<span class="inline-formula"><sup>−3</sup></span> and 322 (105–443) cm<span class="inline-formula"><sup>−3</sup></span>, respectively. Concentrations in the mid-latitudes were typically around 350 cm<span class="inline-formula"><sup>−3</sup></span> and 160 cm<span class="inline-formula"><sup>−3</sup></span> for CN<span class="inline-formula"><sub>10</sub></span> and CCN<span class="inline-formula"><sub>0.5</sub></span>, respectively. In the southern sector, concentrations rose markedly, reaching 447 (298–446) cm<span class="inline-formula"><sup>−3</sup></span> and 232 (186–271) cm<span class="inline-formula"><sup>−3</sup></span> for CN<span class="inline-formula"><sub>10</sub></span> and CCN<span class="inline-formula"><sub>0.5</sub></span>, respectively. The aerosol composition in this sector was marked by a distinct drop in sea salt and increase in both sulfate fraction and absolute concentrations, resulting in a substantially higher CCN<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M17" display="inline" overflow="scroll" dspmath="mathml"><mrow><msub><mi/><mn mathvariant="normal">0.5</mn></msub><mo>/</mo></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="20pt" height="14pt" class="svg-formula" dspmath="mathimg" md5hash="1ca0f7f0cbab2293f1d1e6d5184f3377"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-12757-2021-ie00001.svg" width="20pt" height="14pt" src="acp-21-12757-2021-ie00001.png"/></svg:svg></span></span>CN<span class="inline-formula"><sub>10</sub></span> activation ratio of 0.8 compared to around 0.4 for mid-latitudes. Long-term measurements at land-based research stations surrounding the Southern Ocean were found to be good representations at their respective latitudes; however this study highlighted the need for more long-term measurements in the region. CCN observations at Cape Grim (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M19" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">40</mn><msup><mi/><mo>∘</mo></msup><msup><mn mathvariant="normal">39</mn><mo>′</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="34pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="666ce17390caa2e9437e22a67b9baad6"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-12757-2021-ie00002.svg" width="34pt" height="11pt" src="acp-21-12757-2021-ie00002.png"/></svg:svg></span></span> S) corresponded with CCN measurements from northern and mid-latitude sectors, while CN<span class="inline-formula"><sub>10</sub></span> observations only corresponded with observations from the<span id="page12758"/> northern sector. Measurements from a simultaneous 2-year campaign at Macquarie Island (<span class="inline-formula"><math xmlns="http://www.w3.org/1998/Math/MathML" id="M21" display="inline" overflow="scroll" dspmath="mathml"><mrow><mn mathvariant="normal">54</mn><msup><mi/><mo>∘</mo></msup><msup><mn mathvariant="normal">30</mn><mo>′</mo></msup></mrow></math><span><svg:svg xmlns:svg="http://www.w3.org/2000/svg" width="34pt" height="11pt" class="svg-formula" dspmath="mathimg" md5hash="0918a3ee3731f893142f18257857e8cd"><svg:image xmlns:xlink="http://www.w3.org/1999/xlink" xlink:href="acp-21-12757-2021-ie00003.svg" width="34pt" height="11pt" src="acp-21-12757-2021-ie00003.png"/></svg:svg></span></span> S) were found to represent all aerosol species well. The southernmost latitudes differed significantly from both of these stations, and previous work suggests that Antarctic stations on the East Antarctic coastline do not represent the East Antarctic sea-ice latitudes well. Further measurements are needed to capture the long-term, seasonal and longitudinal variability in aerosol processes across the Southern Ocean.</p>https://acp.copernicus.org/articles/21/12757/2021/acp-21-12757-2021.pdf
spellingShingle R. S. Humphries
R. S. Humphries
M. D. Keywood
M. D. Keywood
S. Gribben
I. M. McRobert
J. P. Ward
P. Selleck
S. Taylor
J. Harnwell
C. Flynn
G. R. Kulkarni
G. G. Mace
A. Protat
A. Protat
S. P. Alexander
S. P. Alexander
G. McFarquhar
G. McFarquhar
Southern Ocean latitudinal gradients of cloud condensation nuclei
Atmospheric Chemistry and Physics
title Southern Ocean latitudinal gradients of cloud condensation nuclei
title_full Southern Ocean latitudinal gradients of cloud condensation nuclei
title_fullStr Southern Ocean latitudinal gradients of cloud condensation nuclei
title_full_unstemmed Southern Ocean latitudinal gradients of cloud condensation nuclei
title_short Southern Ocean latitudinal gradients of cloud condensation nuclei
title_sort southern ocean latitudinal gradients of cloud condensation nuclei
url https://acp.copernicus.org/articles/21/12757/2021/acp-21-12757-2021.pdf
work_keys_str_mv AT rshumphries southernoceanlatitudinalgradientsofcloudcondensationnuclei
AT rshumphries southernoceanlatitudinalgradientsofcloudcondensationnuclei
AT mdkeywood southernoceanlatitudinalgradientsofcloudcondensationnuclei
AT mdkeywood southernoceanlatitudinalgradientsofcloudcondensationnuclei
AT sgribben southernoceanlatitudinalgradientsofcloudcondensationnuclei
AT immcrobert southernoceanlatitudinalgradientsofcloudcondensationnuclei
AT jpward southernoceanlatitudinalgradientsofcloudcondensationnuclei
AT pselleck southernoceanlatitudinalgradientsofcloudcondensationnuclei
AT staylor southernoceanlatitudinalgradientsofcloudcondensationnuclei
AT jharnwell southernoceanlatitudinalgradientsofcloudcondensationnuclei
AT cflynn southernoceanlatitudinalgradientsofcloudcondensationnuclei
AT grkulkarni southernoceanlatitudinalgradientsofcloudcondensationnuclei
AT ggmace southernoceanlatitudinalgradientsofcloudcondensationnuclei
AT aprotat southernoceanlatitudinalgradientsofcloudcondensationnuclei
AT aprotat southernoceanlatitudinalgradientsofcloudcondensationnuclei
AT spalexander southernoceanlatitudinalgradientsofcloudcondensationnuclei
AT spalexander southernoceanlatitudinalgradientsofcloudcondensationnuclei
AT gmcfarquhar southernoceanlatitudinalgradientsofcloudcondensationnuclei
AT gmcfarquhar southernoceanlatitudinalgradientsofcloudcondensationnuclei