Common functional networks in the mouse brain revealed by multi-centre resting-state fMRI analysis

Preclinical applications of resting-state functional magnetic resonance imaging (rsfMRI) offer the possibility to non-invasively probe whole-brain network dynamics and to investigate the determinants of altered network signatures observed in human studies. Mouse rsfMRI has been increasingly adopted...

Full description

Bibliographic Details
Main Authors: Joanes Grandjean, Carola Canella, Cynthia Anckaerts, Gülebru Ayrancı, Salma Bougacha, Thomas Bienert, David Buehlmann, Ludovico Coletta, Daniel Gallino, Natalia Gass, Clément M. Garin, Nachiket Abhay Nadkarni, Neele S. Hübner, Meltem Karatas, Yuji Komaki, Silke Kreitz, Francesca Mandino, Anna E. Mechling, Chika Sato, Katja Sauer, Disha Shah, Sandra Strobelt, Norio Takata, Isabel Wank, Tong Wu, Noriaki Yahata, Ling Yun Yeow, Yohan Yee, Ichio Aoki, M. Mallar Chakravarty, Wei-Tang Chang, Marc Dhenain, Dominik von Elverfeldt, Laura-Adela Harsan, Andreas Hess, Tianzi Jiang, Georgios A. Keliris, Jason P. Lerch, Andreas Meyer-Lindenberg, Hideyuki Okano, Markus Rudin, Alexander Sartorius, Annemie Van der Linden, Marleen Verhoye, Wolfgang Weber-Fahr, Nicole Wenderoth, Valerio Zerbi, Alessandro Gozzi
Format: Article
Language:English
Published: Elsevier 2020-01-01
Series:NeuroImage
Subjects:
Online Access:http://www.sciencedirect.com/science/article/pii/S1053811919308699
_version_ 1818160641007943680
author Joanes Grandjean
Carola Canella
Cynthia Anckaerts
Gülebru Ayrancı
Salma Bougacha
Thomas Bienert
David Buehlmann
Ludovico Coletta
Daniel Gallino
Natalia Gass
Clément M. Garin
Nachiket Abhay Nadkarni
Neele S. Hübner
Meltem Karatas
Yuji Komaki
Silke Kreitz
Francesca Mandino
Anna E. Mechling
Chika Sato
Katja Sauer
Disha Shah
Sandra Strobelt
Norio Takata
Isabel Wank
Tong Wu
Noriaki Yahata
Ling Yun Yeow
Yohan Yee
Ichio Aoki
M. Mallar Chakravarty
Wei-Tang Chang
Marc Dhenain
Dominik von Elverfeldt
Laura-Adela Harsan
Andreas Hess
Tianzi Jiang
Georgios A. Keliris
Jason P. Lerch
Andreas Meyer-Lindenberg
Hideyuki Okano
Markus Rudin
Alexander Sartorius
Annemie Van der Linden
Marleen Verhoye
Wolfgang Weber-Fahr
Nicole Wenderoth
Valerio Zerbi
Alessandro Gozzi
author_facet Joanes Grandjean
Carola Canella
Cynthia Anckaerts
Gülebru Ayrancı
Salma Bougacha
Thomas Bienert
David Buehlmann
Ludovico Coletta
Daniel Gallino
Natalia Gass
Clément M. Garin
Nachiket Abhay Nadkarni
Neele S. Hübner
Meltem Karatas
Yuji Komaki
Silke Kreitz
Francesca Mandino
Anna E. Mechling
Chika Sato
Katja Sauer
Disha Shah
Sandra Strobelt
Norio Takata
Isabel Wank
Tong Wu
Noriaki Yahata
Ling Yun Yeow
Yohan Yee
Ichio Aoki
M. Mallar Chakravarty
Wei-Tang Chang
Marc Dhenain
Dominik von Elverfeldt
Laura-Adela Harsan
Andreas Hess
Tianzi Jiang
Georgios A. Keliris
Jason P. Lerch
Andreas Meyer-Lindenberg
Hideyuki Okano
Markus Rudin
Alexander Sartorius
Annemie Van der Linden
Marleen Verhoye
Wolfgang Weber-Fahr
Nicole Wenderoth
Valerio Zerbi
Alessandro Gozzi
author_sort Joanes Grandjean
collection DOAJ
description Preclinical applications of resting-state functional magnetic resonance imaging (rsfMRI) offer the possibility to non-invasively probe whole-brain network dynamics and to investigate the determinants of altered network signatures observed in human studies. Mouse rsfMRI has been increasingly adopted by numerous laboratories worldwide. Here we describe a multi-centre comparison of 17 mouse rsfMRI datasets via a common image processing and analysis pipeline. Despite prominent cross-laboratory differences in equipment and imaging procedures, we report the reproducible identification of several large-scale resting-state networks (RSN), including a mouse default-mode network, in the majority of datasets. A combination of factors was associated with enhanced reproducibility in functional connectivity parameter estimation, including animal handling procedures and equipment performance. RSN spatial specificity was enhanced in datasets acquired at higher field strength, with cryoprobes, in ventilated animals, and under medetomidine-isoflurane combination sedation. Our work describes a set of representative RSNs in the mouse brain and highlights key experimental parameters that can critically guide the design and analysis of future rodent rsfMRI investigations.
first_indexed 2024-12-11T16:05:06Z
format Article
id doaj.art-c0f102b5e81144188c9903975357a3a8
institution Directory Open Access Journal
issn 1095-9572
language English
last_indexed 2024-12-11T16:05:06Z
publishDate 2020-01-01
publisher Elsevier
record_format Article
series NeuroImage
spelling doaj.art-c0f102b5e81144188c9903975357a3a82022-12-22T00:59:13ZengElsevierNeuroImage1095-95722020-01-01205116278Common functional networks in the mouse brain revealed by multi-centre resting-state fMRI analysisJoanes Grandjean0Carola Canella1Cynthia Anckaerts2Gülebru Ayrancı3Salma Bougacha4Thomas Bienert5David Buehlmann6Ludovico Coletta7Daniel Gallino8Natalia Gass9Clément M. Garin10Nachiket Abhay Nadkarni11Neele S. Hübner12Meltem Karatas13Yuji Komaki14Silke Kreitz15Francesca Mandino16Anna E. Mechling17Chika Sato18Katja Sauer19Disha Shah20Sandra Strobelt21Norio Takata22Isabel Wank23Tong Wu24Noriaki Yahata25Ling Yun Yeow26Yohan Yee27Ichio Aoki28M. Mallar Chakravarty29Wei-Tang Chang30Marc Dhenain31Dominik von Elverfeldt32Laura-Adela Harsan33Andreas Hess34Tianzi Jiang35Georgios A. Keliris36Jason P. Lerch37Andreas Meyer-Lindenberg38Hideyuki Okano39Markus Rudin40Alexander Sartorius41Annemie Van der Linden42Marleen Verhoye43Wolfgang Weber-Fahr44Nicole Wenderoth45Valerio Zerbi46Alessandro Gozzi47Singapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, 138667, Singapore; Corresponding author. Department of Radiology and Nuclear Medicine & Donders Institute for Brain, Cognition, and Behaviour, Donders Institute, Radboud University Medical Centre, Nijmegen, 6525 EZ, the Netherlands.Functional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Centre for Neuroscience and Cognitive Systems @ UNITN, 38068, Rovereto, Italy; CIMeC, Centre for Mind/Brain Sciences, University of Trento, 38068, Rovereto, ItalyBio-Imaging Lab, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, BelgiumDouglas Mental Health University Institute, McGill University, Montreal, Quebec, CanadaCommissariat à l’Énergie Atomique et Aux Énergies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Fontenay-aux-roses, France; Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, FranceDepartment of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, GermanyInstitute for Biomedical Engineering, University and ETH Zürich, Wolfgang-Pauli-Str. 27, 8093, Zürich, SwitzerlandFunctional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Centre for Neuroscience and Cognitive Systems @ UNITN, 38068, Rovereto, Italy; CIMeC, Centre for Mind/Brain Sciences, University of Trento, 38068, Rovereto, ItalyDouglas Mental Health University Institute, McGill University, Montreal, Quebec, CanadaDepartment of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, GermanyCommissariat à l’Énergie Atomique et Aux Énergies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Fontenay-aux-roses, France; Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, FranceCommissariat à l’Énergie Atomique et Aux Énergies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Fontenay-aux-roses, France; Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, FranceDepartment of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, GermanyDepartment of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany; The Engineering Science, Computer Science and Imaging Laboratory (ICube), Department of Biophysics and Nuclear Medicine, University of Strasbourg and University Hospital of Strasbourg, 67000, Strasbourg, FranceCentral Institute for Experimental Animals (CIEA), 3-25-12, Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan; Department of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, JapanInstitute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, GermanySingapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, 138667, Singapore; Faculty of Life Sciences, University of Manchester, Manchester, United KingdomDepartment of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, GermanyFunctional and Molecular Imaging Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba-city, Chiba, 263-8555, JapanInstitute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, GermanyBio-Imaging Lab, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, Belgium; Laboratory for the Research of Neurodegenerative Diseases, VIB Center for Brain and Disease Research, KU Leuven, O&N4 Herestraat 49 Box 602, 3000, Leuven, BelgiumInstitute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, GermanyCentral Institute for Experimental Animals (CIEA), 3-25-12, Tonomachi, Kawasaki, Kanagawa, 210-0821, Japan; Department of Neuropsychiatry, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, JapanInstitute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, GermanyQueensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Centre for Medical Image Computing, Department of Computer Science, & Max Planck University College London Centre for Computational Psychiatry and Ageing Research, University College London, London, UK; Computational, Cognitive and Clinical Imaging Lab, Division of Brain Sciences, Department of Medicine, Imperial College London, W12 0NN, UK; UK DRI Centre for Care Research and Technology, Imperial College London, W12 0NN, UKFunctional and Molecular Imaging Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba-city, Chiba, 263-8555, JapanSingapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, 138667, SingaporeHospital for Sick Children and Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, CanadaFunctional and Molecular Imaging Team, Department of Molecular Imaging and Theranostics, National Institute of Radiological Sciences, National Institutes for Quantum and Radiological Science and Technology, Anagawa 4-9-1, Inage, Chiba-city, Chiba, 263-8555, JapanDouglas Mental Health University Institute, McGill University, Montreal, Quebec, Canada; Department of Psychiatry, McGill University, Montreal, Quebec, Canada; Department of Biological and Biomedical Engineering, McGill University, Montreal, Quebec, CanadaSingapore Bioimaging Consortium, Agency for Science, Technology and Research, 11 Biopolis Way, 138667, SingaporeCommissariat à l’Énergie Atomique et Aux Énergies Alternatives (CEA), Direction de la Recherche Fondamentale (DRF), Institut François Jacob, MIRCen, Fontenay-aux-roses, France; Centre National de la Recherche Scientifique (CNRS), Université Paris-Sud, Université Paris-Saclay UMR 9199, Neurodegenerative Diseases Laboratory, Fontenay-aux-Roses, FranceDepartment of Radiology, Medical Physics, Medical Center – University of Freiburg, Faculty of Medicine, University of Freiburg, Killianstr. 5a, 79106, Freiburg, Germany; BrainLinks-BrainTools Cluster of Excellence, University of Freiburg, Georges-Köhler-Allee 80, 79110, Freiburg, GermanyThe Engineering Science, Computer Science and Imaging Laboratory (ICube), Department of Biophysics and Nuclear Medicine, University of Strasbourg and University Hospital of Strasbourg, 67000, Strasbourg, FranceInstitute of Experimental and Clinical Pharmacology and Toxicology, Friedrich-Alexander University Erlangen-Nürnberg (FAU), Fahrstraße 17, 91054, Erlangen, GermanyQueensland Brain Institute, The University of Queensland, Brisbane, Queensland, Australia; Brainnetome Center & National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing, 100190, ChinaBio-Imaging Lab, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, BelgiumHospital for Sick Children and Department of Medical Biophysics, The University of Toronto, Toronto, Ontario, Canada; Wellcome Centre for Integrative Neuroimaging, University of Oxford, Oxford, OX3 9DU, UKDepartment of Psychiatry and Psychotherapy, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, GermanyDepartment of Physiology, Keio University School of Medicine, 35 Shinanomachi, Shinjuku, Tokyo, 160-8582, Japan; Laboratory for Marmoset Neural Architecture, RIKEN Brain Science Institute, Wako, Saitama, 351-0198, JapanInstitute for Biomedical Engineering, University and ETH Zürich, Wolfgang-Pauli-Str. 27, 8093, Zürich, Switzerland; Institute of Pharmacology and Toxicology, University of Zürich, Winterthurerstrasse 190, 8057, Zürich, Switzerland; Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, SwitzerlandDepartment of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, GermanyBio-Imaging Lab, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, BelgiumBio-Imaging Lab, University of Antwerp, CDE, Universiteitsplein 1, 2610, Antwerp, BelgiumDepartment of Neuroimaging, Central Institute of Mental Health, Medical Faculty Mannheim, University of Heidelberg, Mannheim, GermanyNeural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland; Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, SwitzerlandNeural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zürich, Winterthurerstrasse 190, 8057, Zurich, Switzerland; Neuroscience Center Zürich, ETH Zürich and University of Zürich, Zürich, SwitzerlandFunctional Neuroimaging Laboratory, Istituto Italiano di Tecnologia, Centre for Neuroscience and Cognitive Systems @ UNITN, 38068, Rovereto, ItalyPreclinical applications of resting-state functional magnetic resonance imaging (rsfMRI) offer the possibility to non-invasively probe whole-brain network dynamics and to investigate the determinants of altered network signatures observed in human studies. Mouse rsfMRI has been increasingly adopted by numerous laboratories worldwide. Here we describe a multi-centre comparison of 17 mouse rsfMRI datasets via a common image processing and analysis pipeline. Despite prominent cross-laboratory differences in equipment and imaging procedures, we report the reproducible identification of several large-scale resting-state networks (RSN), including a mouse default-mode network, in the majority of datasets. A combination of factors was associated with enhanced reproducibility in functional connectivity parameter estimation, including animal handling procedures and equipment performance. RSN spatial specificity was enhanced in datasets acquired at higher field strength, with cryoprobes, in ventilated animals, and under medetomidine-isoflurane combination sedation. Our work describes a set of representative RSNs in the mouse brain and highlights key experimental parameters that can critically guide the design and analysis of future rodent rsfMRI investigations.http://www.sciencedirect.com/science/article/pii/S1053811919308699Functional connectivityDefault-mode networkICASeed-basedConnectome
spellingShingle Joanes Grandjean
Carola Canella
Cynthia Anckaerts
Gülebru Ayrancı
Salma Bougacha
Thomas Bienert
David Buehlmann
Ludovico Coletta
Daniel Gallino
Natalia Gass
Clément M. Garin
Nachiket Abhay Nadkarni
Neele S. Hübner
Meltem Karatas
Yuji Komaki
Silke Kreitz
Francesca Mandino
Anna E. Mechling
Chika Sato
Katja Sauer
Disha Shah
Sandra Strobelt
Norio Takata
Isabel Wank
Tong Wu
Noriaki Yahata
Ling Yun Yeow
Yohan Yee
Ichio Aoki
M. Mallar Chakravarty
Wei-Tang Chang
Marc Dhenain
Dominik von Elverfeldt
Laura-Adela Harsan
Andreas Hess
Tianzi Jiang
Georgios A. Keliris
Jason P. Lerch
Andreas Meyer-Lindenberg
Hideyuki Okano
Markus Rudin
Alexander Sartorius
Annemie Van der Linden
Marleen Verhoye
Wolfgang Weber-Fahr
Nicole Wenderoth
Valerio Zerbi
Alessandro Gozzi
Common functional networks in the mouse brain revealed by multi-centre resting-state fMRI analysis
NeuroImage
Functional connectivity
Default-mode network
ICA
Seed-based
Connectome
title Common functional networks in the mouse brain revealed by multi-centre resting-state fMRI analysis
title_full Common functional networks in the mouse brain revealed by multi-centre resting-state fMRI analysis
title_fullStr Common functional networks in the mouse brain revealed by multi-centre resting-state fMRI analysis
title_full_unstemmed Common functional networks in the mouse brain revealed by multi-centre resting-state fMRI analysis
title_short Common functional networks in the mouse brain revealed by multi-centre resting-state fMRI analysis
title_sort common functional networks in the mouse brain revealed by multi centre resting state fmri analysis
topic Functional connectivity
Default-mode network
ICA
Seed-based
Connectome
url http://www.sciencedirect.com/science/article/pii/S1053811919308699
work_keys_str_mv AT joanesgrandjean commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT carolacanella commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT cynthiaanckaerts commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT gulebruayrancı commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT salmabougacha commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT thomasbienert commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT davidbuehlmann commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT ludovicocoletta commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT danielgallino commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT nataliagass commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT clementmgarin commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT nachiketabhaynadkarni commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT neeleshubner commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT meltemkaratas commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT yujikomaki commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT silkekreitz commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT francescamandino commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT annaemechling commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT chikasato commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT katjasauer commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT dishashah commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT sandrastrobelt commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT noriotakata commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT isabelwank commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT tongwu commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT noriakiyahata commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT lingyunyeow commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT yohanyee commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT ichioaoki commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT mmallarchakravarty commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT weitangchang commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT marcdhenain commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT dominikvonelverfeldt commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT lauraadelaharsan commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT andreashess commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT tianzijiang commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT georgiosakeliris commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT jasonplerch commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT andreasmeyerlindenberg commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT hideyukiokano commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT markusrudin commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT alexandersartorius commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT annemievanderlinden commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT marleenverhoye commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT wolfgangweberfahr commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT nicolewenderoth commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT valeriozerbi commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis
AT alessandrogozzi commonfunctionalnetworksinthemousebrainrevealedbymulticentrerestingstatefmrianalysis