Time evolution of quantum entanglement of an EPR pair in a localized environment

The Einstein–Podolsky–Rosen (EPR) pair of qubits plays a critical role in many quantum protocol applications such as quantum communication and quantum teleportation. Due to interactions with the environment, an EPR pair can lose its entanglement and no longer serve as a useful quantum resource. On t...

Full description

Bibliographic Details
Main Authors: Jia Wang, Xia-Ji Liu, Hui Hu
Format: Article
Language:English
Published: IOP Publishing 2018-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/aabe3d
Description
Summary:The Einstein–Podolsky–Rosen (EPR) pair of qubits plays a critical role in many quantum protocol applications such as quantum communication and quantum teleportation. Due to interactions with the environment, an EPR pair can lose its entanglement and no longer serve as a useful quantum resource. On the other hand, it has been suggested that introducing disorder into environment might help prevent thermalization and improve the preservation of entanglement. Here, we theoretically investigate the time evolution of quantum entanglement of an EPR pair in a random-field XXZ spin chain model in the Anderson localized (AL) and many-body localized (MBL) phase. We find that the entanglement between qubits decreases and approaches a plateau in the AL phase, but shows a power-law decrease after some critical time determined by the interaction strength in the MBL phase. Our findings shed light on applying AL/MBL to improve quantum information storage, and can be used as a practical indicator to distinguish the AL and MBL phase.
ISSN:1367-2630