Effective PT-symmetric metasurfaces for subwavelength amplified sensing

We propose a novel design principle for ultrathin metasurfaces to realize optically amplified sensing with a performance that exceeds those of passive coherent perfect absorbers by several orders of magnitude. Our strategy is based on a generalized condition of lasing, coherent perfect absorption an...

Full description

Bibliographic Details
Main Authors: Shiyi Xiao, James Gear, Stefan Rotter, Jensen Li
Format: Article
Language:English
Published: IOP Publishing 2016-01-01
Series:New Journal of Physics
Subjects:
Online Access:https://doi.org/10.1088/1367-2630/18/8/085004
Description
Summary:We propose a novel design principle for ultrathin metasurfaces to realize optically amplified sensing with a performance that exceeds those of passive coherent perfect absorbers by several orders of magnitude. Our strategy is based on a generalized condition of lasing, coherent perfect absorption and their coexistence in metamaterials that feature an effective PT-symmetry. The devices we introduce here can be operated in configurations that involve both a one-sided or a two-sided wave incidence, where the latter case allows us to tune the degree of amplified absorption through the coherent phase between the two input beams. We also discuss how the conditions on the material parameters can be relaxed, away from the ideal case, such that a substantial amplification of the sensing performance can easily be reached in practical applications.
ISSN:1367-2630