Summary: | Dynamic Fault Trees (DFTs) are increasingly being used for modeling the failure behaviors of systems, particularly dynamic behaviors that cannot be captured using conventional combinatorial models. Traditionally, paper and pencil or simulation are used for the analysis of DFTs. While the former can provide generic expressions for the probability of failure, its results are prone to human errors. The latter method is based on sampling and the results are not guaranteed to be complete. Leveraging upon the expressive and sound nature of higher-order logic (HOL) theorem proving, it has been recently proposed for the analysis of DFTs algebraically. In this paper, we propose a novel methodology for the formal analysis of DFTs, based on the algebraic approach, while capturing both the qualitative and probabilistic aspects using theorem proving. In this paper, we further enrich the DFT library in HOL by providing the formalization of spare gates with a shared spare and the verification details of their probabilistic behavior. To demonstrate the utilization of our methodology, we apply it for the formal analysis of two safety-critical systems, namely, a drive-by-wire system and a cardiac assist system.
|