Summary: | Aiming at the mechanical equipment in the fault diagnosis process, the traditional Shannon–Nyquist sampling theorem is used for data collection, which faces main problems of storage, transmission, and processing of mechanical vibration signals. This paper presents a novel method of compressed sensing reconstruction for axial piston pump bearing vibration signals based on the adaptive sparse dictionary model. First, vibration signals were divided into blocks, and an energy sequence was produced in accordance with the energy of each signal block. Second, the energy sequence of each signal block was classified by the quantum particle swarm optimization algorithm. Finally, the reconstruction of machinery vibration signals was carried out using the K-SVD dictionary algorithm. The average relative error of the reconstructed signal obtained by the proposed algorithm is 4.25%, and the reconstruction time decreases by 43.6% when the compression ratio is 1.6.
|