PLVAP as an Early Marker of Glomerular Endothelial Damage in Mice with Diabetic Kidney Disease

Plasmalemma vesicle-associated protein (PLVAP) is the main component of endothelial diaphragms in fenestrae, caveolae, and transendothelial channels. PLVAP is expressed in the adult kidney glomerulus upon injury. Glomerular endothelial injury is associated with progressive loss of kidney function in...

Full description

Bibliographic Details
Main Authors: Elena E. Wolf, Anne Steglich, Friederike Kessel, Hannah Kröger, Jan Sradnick, Simone Reichelt-Wurm, Kathrin Eidenschink, Miriam C. Banas, Eckhard Wolf, Rüdiger Wanke, Florian Gembardt, Vladimir T. Todorov
Format: Article
Language:English
Published: MDPI AG 2023-01-01
Series:International Journal of Molecular Sciences
Subjects:
Online Access:https://www.mdpi.com/1422-0067/24/2/1094
Description
Summary:Plasmalemma vesicle-associated protein (PLVAP) is the main component of endothelial diaphragms in fenestrae, caveolae, and transendothelial channels. PLVAP is expressed in the adult kidney glomerulus upon injury. Glomerular endothelial injury is associated with progressive loss of kidney function in diabetic kidney disease (DKD). This study aimed to investigate whether PLVAP could serve as a marker for glomerular endothelial damage in DKD. Glomerular PLVAP expression was analyzed in different mouse models of DKD and their respective healthy control animals using automatic digital quantification of histological whole kidney sections. Transgenic mice expressing a dominant-negative GIP receptor (GIPR<sup>dn</sup>) in pancreatic beta-cells as a model for diabetes mellitus (DM) type 1 and black and tan brachyuric (BTBR) <i>ob/ob</i> mice, as a model for DM type 2, were used. Distinct PLVAP induction was observed in all diabetic models studied. Traces of glomerular PLVAP expression could be identified in the healthy control kidneys using automated quantification. Stainings for other endothelial injury markers such as CD31 or the erythroblast transformation-specific related gene (ERG) displayed no differences between diabetic and healthy groups at the time points when PLVAP was induced. The same was also true for the mesangial cells marker α8Integrin, while the podocyte marker nephrin appeared to be diminished only in BTBR <i>ob/ob</i> mice. Glomerular hypertrophy, which is one of the initial morphological signs of diabetic kidney damage, was observed in both diabetic models. These findings suggest that PLVAP is an early marker of glomerular endothelial injury in diabetes-induced kidney damage in mice.
ISSN:1661-6596
1422-0067